Population structure and insecticide response of Gammarus spp. in agricultural and upstream forested sites of small streams

Author:

Schneeweiss Anke,Schreiner Verena C.,Liess Matthias,Röder Nina,Schwenk Klaus,Schäfer Ralf B.

Abstract

AbstractExposure to pesticides may cause adaptation not only in agricultural pests and pathogens, but also in non-target organisms. Previous studies mainly searched for adaptations in non-target organisms in pesticide-polluted sites. However, organisms may propagate heritable pesticide effects, such as increased tolerance, to non-exposed populations through gene flow. We examined the pesticide tolerance—as one of the pre-assumptions of local adaptation—of the freshwater crustacean Gammarus spp. (at genus level reflecting the gammarid community). The pesticide tolerance was quantified in acute toxicity tests using the insecticide imidacloprid. Gammarids were sampled at pesticide-polluted agricultural sites (termed agriculture), least impacted upstream sites (termed refuge) and transitional sites (termed edge) in six small streams of south-west Germany. Furthermore, we examined the population genetic structure of Gammarus fossarum and the energy reserves (here lipid content) of G. fossarum as well as of Gammarus spp. at the three site types (i.e. agriculture, edge and refuge). We found significantly lower imidacloprid tolerance of Gammarus spp. from agricultural sites compared to edge and refuge sites, potentially due to higher environmental stress at agricultural sites, as indicated by a slightly lower lipid content per mg gammarid tissue. We found no differences in pesticide tolerance between edge and refuge populations, indicating no propagation of pesticide effects to edges. The genetic structure among G. fossarum populations showed significant differentiation between streams, but not within a stream across the site types. We suggest that high gene flow within each stream hindered population differentiation and resulted in similar (pre)adaptations to local stress levels between site types, although they exhibited different pesticide pollution. Further studies on target genes (e.g., conferring pesticide tolerance), population structure and fitness of different phenotypes in particular among non-target organisms are required for adjacent pristine ecosystems to detect potential propagations of pesticide effects.

Funder

Deutsche Forschungsgemeinschaft

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3