Phototransformation kinetics of cyanobacterial toxins and secondary metabolites in surface waters

Author:

Natumi Regiane,Marcotullio Sandro,Janssen Elisabeth M.-L.ORCID

Abstract

Abstract Background Cyanobacteria and their toxins occur in high concentrations during the so-called bloom events in surface waters. To be able to assess the risks associated with cyanobacterial blooms, we need to understand the persistence and fate processes of these toxins and other bioactive metabolites. In this study, we investigated the photochemical fate of 54 cyanopeptides extracted from two strains of Microcystis aeruginosa (PCC7806 and UV006), Planktothrix rubescens, and Dolichospermum flos aquae. We determined half-lives during sunlight exposure in lake water and inspected the effect of pH on transformation kinetics for 27 microcystins, 8 anabaenopeptins, 14 cyanopeptolins, 2 cyclamides, and 3 aeruginosins. Results For cyanopeptides from D. flos aquae and P. rubescens, we observed the highest removal of 28 and 26%, respectively, after 3-h sunlight exposure. Most cyanopeptides produced by the two M. aeruginosa strains were rather persistent with only up to 3% removal. The more reactive cyanopeptides contained amino acids known to undergo phototransformation, including methionine and tyrosine moieties or their derivatives. Photochemical half-lives of 14 tyrosine-containing cyanopeptides decreased by one order of magnitude from nearly persistent conditions at pH 7 (half-life > 70 h) to shorter half-lives at pH 10 (< 10 h). Conclusions More work is needed to distinguish the contribution of different photochemical reaction pathways including the contributions to the pH effect. To the best of our knowledge, this is the first assessment of transformation kinetics of such a wide range of cyanopeptides. The abundant and persistent cyanopeptides that have not been studied in detail yet should be prioritized for the evaluation of their ecosystem and human health risks and for their abatement during drinking water treatment.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3