Review: mountain lakes as freshwater resources at risk from chemical pollution

Author:

Machate OliverORCID,Schmeller Dirk S.ORCID,Schulze TobiasORCID,Brack WernerORCID

Abstract

AbstractBackgroundChemical pollution forms a severe threat for human and environmental health. While the risks for European lowland water bodies are well known, there is little knowledge on remote aquatic ecosystems and particularly mountain lakes, despite their importance for the provision of freshwater. Here, we critically review the current knowledge on the exposure and risk by chemical pollution for mountain lakes and present a tiered approach on how to advance effectively our understanding in the future.ResultsGenerally, pollutant monitoring data are currently incomplete, with many regions and substances having been only poorly investigated. More reliable data exist only for persistent organic pollutants (POPs). However, there is increasing evidence that even remote mountain lakes are exposed to a wide range of organic pollutants. Among them potent pesticides currently used in agricultural and biocidal applications, such as diazinon and permethrin. The exposure of mountain lakes to pollutants follows a complex pattern. Pollutants are introduced into mountain lakes via the atmospheric deposition and run-off from the watershed, but also local sources, like tourism and pastoralism. Our risk assessment and recent biomonitoring studies suggest that there are widespread chronic toxic risks on crustacean in mountain ranges. If mountain ranges are exposed to tourism and pastoralism, even acute toxic effects on crustacean are possible. Thereby, the vulnerability of mountain lakes to toxic effects has to be expected to be particularly high due to the harsh environmental conditions at high altitudes, the organism’s traits, the insular position of mountain lakes and a lower species richness with increasing altitudes. Furthermore, there is little knowledge on the biological processes leading to the degradation of chemical pollutants under the environmental and ecological conditions of mountain ecosystems.ConclusionWhile the exposure and sensitivity of mountain aquatic ecosystems is currently poorly investigated, the existing data suggest that it is very likely that also water bodies as remote as mountain lakes do suffer from pollution-induced toxicity. To verify this suggestion and expand the existing knowledge, it is necessary that future studies combine a more holistic pollution monitoring with exposure modelling and links to biological effects. Only then will it be possible to obtain a more reliable understanding of the impact of chemical pollution on aquatic mountain ecosystems and to protect these fragile ecosystems.

Funder

AXA Research Fund

Helmholtz-Zentrum für Umweltforschung GmbH - UFZ

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference126 articles.

1. Crutzen PJ (2016) The “Anthropocene.” In: Ehlers E, Krafft T (eds) Earth system science in the Anthropocene. Springer, Heidelberg, pp 13–18

2. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin E et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc. https://doi.org/10.5751/ES-03180-140232

3. United Nations Environment Programme (2021): Making peace with nature. https://www.unep.org/resources/making-peace-nature.

4. Messerli B, Viviroli D, Weingartner R (2004) Mountains of the world: vulnerable water towers for the 21st century. Ambio Spec No 13:29–34

5. Schmeller D, Loyau A, Bao K, Brack W, Chatzinotas A, Vleeschouwer F et al (2018) People, pollution and pathogens—global change impacts in mountain freshwater ecosystems. Sci Total Environ 622–623:756

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3