Author:
Gai Claudia S,Lu Jingnan,Brigham Christopher J,Bernardi Amanda C,Sinskey Anthony J
Abstract
Abstract
Carbonic anhydrase (CA) enzymes catalyze the interconversion of CO2 and bicarbonate. These enzymes play important roles in cellular metabolism, CO2 transport, ion transport, and internal pH regulation. Understanding the metabolic role of CAs in the chemolithoautotropic bacterium Ralstonia eutropha is important for the development of high performance fermentation processes based on the bacterium’s capability to fix carbon using the Calvin-Benson-Bassham (CBB) cycle. Analysis of the R. eutropha H16 genome sequence revealed the presence of four CA genes: can, can2, caa and cag. We evaluated the importance of each of the CAs in the metabolism of R. eutropha by examination of growth and enzyme activity in gene deletion, complementation, and overexpression strains. All four purified CAs were capable of performing the interconversion of CO2 and HCO3
–, although the equilibrium towards the formation of CO2 or HCO3
– differs with each CA. Deletion of can, encoding a β-CA, affected the growth of R. eutropha; however the growth defect could be compensated by adding CO2 to the culture. Deletion of the caa, encoding an α-CA, had the strongest deleterious influence on cell growth. Strains with deletion or overexpression of can2 or cag genes exhibited similar behavior to wild type under most of the conditions tested. In this work, Caa was studied in greater detail using microscopy and complementation experiments, which helped confirm its periplasmic localization and determine its importance for robust growth of R. eutropha. A hypothesis for the coordinated role of these four enzymes in the metabolism of R. eutropha is proposed.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference43 articles.
1. Kusian B, Sültemeyer D, Bowien B: Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO
2
concentrations. J Bacteriol 2002, 184: 5018–5026. 10.1128/JB.184.18.5018-5026.2002
2. Lionetto MG, Caricato R, Giordano ME, Erroi E, Schettino T: Carbonic Anhydrase and Heavy Metals, Biochemistry. In Tech Edited by: Deniz E. 2012. . ISBN: 978–953–51–0076–8 http://www.intechopen.com/books/biochemistry/carbonic-anhydrase-and-heavy-metals
3. Smith KS, Ferry JG: Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 2000, 24: 335–366. 10.1111/j.1574-6976.2000.tb00546.x
4. Fasseas MK, Tsikou D, Flemetakis E, Katinakis P: Molecular and biochemical analysis of the a class carbonic anhydrases in Caenorhabditis elegans . Mol Biol Rep 2011, 38: 1777–1785. 10.1007/s11033-010-0292-y
5. Marcus EA, Moshfegh AP, Sachs G, Scott DR: The periplasmic α-carbonic anhydrase activity if Helicobacter pylori is essential for acid acclimation. J Bacteriol 2005, 187: 729–738. 10.1128/JB.187.2.729-738.2005
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献