Author:
O’Callaghan Chris,Sikand Kulvinder
Abstract
Abstract
Background
The effect of anesthetic agents on ependymal ciliary function is unknown. The aim of this study was to determine the effect of halothane and pentobarbital sodium on brain ependymal ciliary function.
Methods
We used an ex vivo rat brain slice model to measure ependymal ciliary beat frequency by high speed video photography at 37°C.
Results
Exposure to halothane caused a significant reduction in ciliary beat frequency of 2 % (P = 0.006), 15.5 % (P < 0.001), and 21.5 % (P < 0.001) for halothane concentrations of 1.8 %, 3.4 % and 4.4 %, respectively, compared to controls. Following a one-hour wash-out period, there was no significant difference between control samples and cilia that had been exposed to 1.8 % (P = 0.5) and 3.4 % (P = 0.3) halothane. The beat frequency of cilia exposed to 4.4 % halothane had increased following the wash-out period but cilia were still beating significantly more slowly than cilia from the control group (P = <0.001).
Pentobarbitone at concentrations of 25 and 50 μg/ml had no effect on ciliary beat frequency compared to controls (P = 0.6 and 0.4 respectively). A significant (P = 0.002) decrease in ciliary beat frequency was seen following incubation with a pentobarbitone concentration of 250 μg/ml (mean (SD) frequency, 24(8) Hz compared to controls, 38(9) Hz).
Conclusions
Halothane reversibly inhibits the rate at which ependymal cilia beat. Pentobarbitone has no effect on ciliary activity at levels used for anesthesia. It is unclear whether the slowing of ependymal ciliary by halothane is responsible for some of the secondary central nervous system effects of volatile anesthetic agents.
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Del Bigio MR: Ependymal cells: biology and pathology. Acta Neuropathol. 2010, 119: 55-73. 10.1007/s00401-009-0624-y.
2. Cathcart RS, Jr Worthington WC: Ciliary movement in the rat cerebral ventricles: clearing action and directions of currents. J Neuropathol Exp Neurol. 1964, 23: 609-618. 10.1097/00005072-196410000-00002.
3. Yamadori T, Nara K: The directions of ciliary beat on the wall of the lateral ventricle and the currents of the cerebrospinal fluid in the brain ventricles. Scan Electron Microsc. 1979, 3: 335-340.
4. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD, Schwiebert EM, Yoder BK: Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005, 132: 5329-5339. 10.1242/dev.02153.
5. Ibanez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen UP, North A, Heintz N, Omran H: Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet. 2004, 13: 2133-2141. 10.1093/hmg/ddh219.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献