Structural Stress–Fatigue Life Curve Improvement of Spot Welding Based on Quasi-Newton Method

Author:

Qin Yahang,Xiao Shoune,Lu Liantao,Yang Bing,Li Xiangjie,Yang Guangwu

Abstract

Abstract∆F-N curves are usually used to predict the fatigue life of spot welding in engineering, but they are time-consuming and laborious and not universal. For the purpose of predicting the fatigue life of spot welding accurately and efficiently, tensile–shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations. These specimens were simulated by using the finite element method, and the structural stress was theoretically calculated. In the double logarithmic coordinate system, the structural stress–fatigue life (S–N) curve of spot welding was fitted by the least-squares method, based on the quasi-Newton method. The square of the correlation coefficient of the S-N curve was taken as the optimization objective, with the correction coefficients of force, bending moment, spot welding diameter, and sheet thickness as the variables. During the optimization process, three different ways were utilized to get three optimized spot welding S–N curves, which are suitable for different situations. The results show that the fitting effect of the S–N curve is improved, the data points are more compact, and the optimization effect is significant. These S–N curves can be used to predict the fatigue life, which provide the basis for practical engineering application.

Funder

National Natural Science Foundation of China

State Key Laboratory of Traction Power

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3