Author:
Li Dan,Yang Xuefeng,Wu Yuanbo,Cheng Jian,Wang Shouren,Wan Zhuang,Liu Wenbo,Xia Guofeng
Abstract
AbstractThe research on surface texture is developing from single macro-texture to composite micro-nano texture. The current research on the anti-friction mechanism and theoretical models of textures is relatively weak. Studying the characteristics of different types of surface textures and determining the applicable working conditions of each texture is the focus of current research. In this paper, a mathematical model of hydrodynamic lubrication is established based on Navier–Stokes equations. The FLUENT software is used to simulate and analyze the four texture models, explore the dynamic pressure lubrication characteristics of different texture types, and provide data support for texture optimization. The key variable values required by the mathematical model are obtained through the simulation data. The friction coefficient of the texture under different working conditions was measured through friction and wear experiments, and the mathematical model was verified by the experimental results. The research results show that circular texture is suitable for low to medium speed and high load conditions, chevron texture is suitable for medium to high speed and medium to high load conditions, groove texture is suitable for high speed and low load conditions, and composite texture is suitable for high speed and medium to high load conditions. Comparing the experimental results with the results obtained by the mathematical model, it is found that the two are basically the same in the ranking of the anti-friction performance of different textures, and there is an error of 10%−40% in the friction coefficient value. In this study, a mathematical model of hydrodynamic lubrication was proposed, and the solution method of the optimal surface texture model was determined.
Funder
The National Natural Science Foundation of China
Postdoctoral Science Foundation of China
Key Research and Development Program of Shandong Province, China
Experts from Taishan Scholars
Youth Innovation in Science & Technology Support Plan of Shandong Province University
Major basic research projects of Shandong Natural Science Foundation
Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference32 articles.
1. Y Q Xing, J X Deng, Z Wu, et al. High friction and low wear properties of laser–textured ceramic surface under dry friction. Optics and Laser Technology, 2017, 93: 24–32.
2. T Ye, J W Ma, Z Y Jia. Influence of design parameters on the low temperature tribological performance of surface textured aluminium alloy. Journal of Physics: Conference Series, 2021, 1986(1): 012003.
3. H Z Fan, Y F Su, J J Song, et al. Design of "double layer" texture to obtain superhydrophobic and high wear–resistant PTFE coatings on the surface of Al2O3/Ni layered ceramics. Tribology International, 2019, 136: 455–461.
4. Z Zhang, W Z Lu, Y F He, et al. Research on optimal laser texture parameters about antifriction characteristics of cemented carbide surface. International Journal of Refractory Metals and Hard Materials, 2019, 82: 287–296.
5. M Wakuda, Y Yamauchi, S Kanzaki, et al. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear, 2003, 254(3–4): 356–363.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献