Fault Diagnosis Method for Rotating Machinery Based on Multi-scale Features

Author:

Liang RuijunORCID,Ran Wenfeng,Chen Yao,Zhu Rupeng

Abstract

AbstractThe vibration signals of rotating machinery usually contain various natural oscillation modes, exhibiting multi-scale features. This paper proposes a Multi-Branch one-dimensional deep Convolutional Neural Network model (MBCNN) that can extract multi-scale features from raw data hierarchically, thereby improving the diagnostic accuracy of gearbox faults in noisy environments. Meanwhile, the algorithms for multi-branch generation and algorithms of the convolution and pooling for each branch are deducted. The MBCNN integrates multiple branches with interrelated convolution kernels of different widths, and each branch can extract the high-level features of the signal. The network parameters of each branch are adjusted by the loss function, which makes the features of the branches complementary. Through the design of MBCNN, the local, global, deep layer and comprehensive information can be obtained from the raw data. On the widely used Case Western Reserve University Bearing Dataset, this paper conducted a performance comparison between the proposed MBCNN and other baselines including the shallow learning methods, 1D-CNN, and multi-scale feature learning methods. Moreover, our gearbox dataset was conducted on a fault diagnosis platform, and a series of experiments were conducted to verify the effectiveness and superiority of the MBCNN. The results indicate that the MBCNN can identify the faults in the gearbox with an accuracy of higher than 92%, and the average validation time per sample is less than 3.2 ms. In a noisy environment, the diagnostic accuracy can reach 90%. The proposed MBCNN provides an effective and intelligent detection method to identify the faults of rotating machinery in the manufacturing processes.

Funder

National Natural Science Foundation of China

Transformation Program of Scientific and Technological Achievements of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3