Switching Frequency Improvement of a High Speed on/off Valve Based on Pre-excitation Control Algorithm

Author:

Zhong QiORCID,Li Xiaotian,Mao Yongxin,Xu Enguang,Jia Tiwei,Li Yanbiao,Yang Huayong

Abstract

AbstractThe high-speed on/off valve (HSV) serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems. As the switching frequency of the HSV increases, the properties of the generated discrete fluid approach those of continuous fluids. Therefore, a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems. However, the current research mainly focuses on its dynamic performance, but neglect its FRC. This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time. The maximum switching frequency (MSF) is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio (SDR), whereas the closing dynamic performance limits the MSF when HSV operates with high SDR. Building upon these findings, the pre-excitation control algorithm (PECA) is proposed to reduce the switching time of the HSV, and consequently enhance its FRC. Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms, the closing delay time by 2.54 ms, and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms. As a result, a larger MSF of 417 Hz and a wider controllable SDR range from 20% to 70% were achieved at a switching frequency of 250 Hz. Thus, the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.

Funder

National Natural Science Foundation of China

Young Elite Scientist Sponsorship Program by CAST

Natural Science Foundation of Zhejiang Province

“Pioneer” and “Leading Goose” R&D Program of Zhejiang Province

State Key Laboratory of Mechanical System and Vibration

Fundamental Research Funds for the Provincial Universities of Zhejiang

Research Project of ZJUT

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3