Coincidence energy spectra due to the intrinsic radioactivity of LYSO scintillation crystals

Author:

Enríquez-Mier-y-Terán Francisco Eduardo,Ortega-Galindo Ana Saret,Murrieta-Rodríguez Tirso,Rodríguez-Villafuerte Mercedes,Martínez-Dávalos Arnulfo,Alva-Sánchez Héctor

Abstract

Abstract Background Lutetium oxyorthosilicate or lutetium yttrium oxyorthosilicate (LYSO) scintillation crystals used in most current PET scanner detectors contain 176Lu, which decays by beta emission to excited states of 176Hf accompanied by the emission of prompt gamma rays or internal conversion electrons. This intrinsic radioactivity can be self-detected in singles mode as a constant background signal that has an energy spectrum whose structure has been explained previously. In this work, we studied the energy spectrum due to the intrinsic radioactivity of LYSO scintillation crystals of two opposing detectors working in coincidence mode. The investigation included experimental data, Monte Carlo simulations and an analytical model. Results The structure of the energy spectrum was completely understood and is the result of the self-detection of beta particles from 176Lu in one crystal and the detection of one or more prompt gamma rays detected in coincidence by the opposing crystal. The most probable coincidence detection involves the gamma rays of 202 and 307 keV, which result in two narrow photopeaks, superimposed on a continuous energy distribution due to the beta particle energy deposition. The relative intensities of the gamma ray peaks depend on crystal size and detector separation distance, as is explained by the analytical model and verified through the Monte Carlo simulations and experiments. Conclusions The analytical model used in this work accurately explains the general features of the coincidence energy spectrum due to the presence of 176Lu in the scintillation crystals, as observed experimentally and with Monte Carlo simulations. This work will be useful to those research studies aimed at using the intrinsic radioactivity of LYSO crystals for transmission scans and detector calibration in coincidence mode.

Funder

PAPIIT-UNAM

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Reference28 articles.

1. Melcher CL, Schweitzer JS. A promising new scintillator: cerium-doped lutetium oxyorthosilicate. Nucl Inst Methods Phys Res A. 1992;314:212–4.

2. Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging. 2003;30:1574–97.

3. National Nuclear Data Center, Chart of nuclides–decay radiation [Internet]. Brookhaven Natl. Lab. 2020 [cited 2020 Mar 5]. Available from: https://www.nndc.bnl.gov/nudat2/.

4. Eckerman KF, Westfall RJ, Ryman JC. Cristy M. Availability of nuclear decay data in electronic form, including beta spectra not previously published: Health Phys. 1994;67:338–45.

5. Conti M, Eriksson L, Rothfuss H, Sjoeholm T, Townsend D, Rosenqvist G, et al. Characterization of176Lu background in LSO-based PET scanners. Phys Med Biol. 2017;62:3700–11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3