Gamma camera imaging characteristics of 166Ho and 99mTc used in Selective Internal Radiation Therapy

Author:

Kästner DavidORCID,Braune Anja,Brogsitter Claudia,Freudenberg Robert,Kotzerke Jörg,Michler Enrico

Abstract

Abstract Background The administration of a 166Ho scout dose is available as an alternative to 99mTc particles for pre-treatment imaging in Selective Internal Radiation Therapy (SIRT). It has been reported that the 166Ho scout dose may be more accurate for the prediction of microsphere distribution and the associated therapy planning. The aim of the current study is to compare the scintigraphic imaging characteristics of both isotopes, considering the objectives of the pre-treatment imaging using clinically geared phantoms. Methods Planar and SPECT/CT images were obtained using a NEMA image quality phantom in different phantom setups and another body-shaped phantom with several inserts. The influence of collimator type, count statistics, dead time effects, isotope properties and patient obesity on spatial resolution, contrast recovery and the detectability of small activity accumulations was investigated. Furthermore, the effects of the imaging characteristics on personalized dosimetry are discussed. Results The images with 99mTc showed up to 3 mm better spatial resolution, up to two times higher contrast recovery and significantly lower image noise than those with 166Ho. The contrast-to-noise ratio was up to five times higher for 99mTc than for 166Ho. Only when using 99mTc all activity-filled spheres could be distinguished from the activity-filled background. The measurements mimicking an obese patient resulted in a degraded image quality for both isotopes. Conclusions Our measurements demonstrate better scintigraphic imaging properties for 99mTc compared to 166Ho in terms of spatial resolution, contrast recovery, image noise, and lesion detectability. While the 166Ho scout dose promises better prediction of the microsphere distribution, it is important to consider the inferior imaging characteristics of 166Ho, which may affect individualized treatment planning in SIRT.

Funder

Universitätsklinikum Carl Gustav Carus Dresden an der Technischen Universität Dresden

Publisher

Springer Science and Business Media LLC

Reference27 articles.

1. Haste P, Tann M, Persohn S, LaRoche T, Aaron V, Mauxion T, et al. Correlation of Technetium-99m Macroaggregated Albumin and Yttrium-90 glass Microsphere Biodistribution in Hepatocellular Carcinoma: a retrospective review of pretreatment single Photon Emission CT and Posttreatment Positron Emission Tomography/CT. J Vasc Interv Radiol. 2017;28:722–e7301. https://doi.org/10.1016/j.jvir.2016.12.1221.

2. Ilhan H, Goritschan A, Paprottka P, Jakobs TF, Fendler WP, Todica A, et al. Predictive value of 99mTc-MAA SPECT for 90Y-Labeled Resin Microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med. 2015;56:1654–60. https://doi.org/10.2967/jnumed.115.162685.

3. Elschot M, Nijsen JFW, Lam MGEH, Smits MLJ, Prince JF, Viergever MA, et al. (99m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with 166Ho-microspheres. Eur J Nucl Med Mol Imaging. 2014;41:1965–75. https://doi.org/10.1007/s00259-014-2784-9.

4. Braat AJAT, Prince JF, van Rooij R, Bruijnen RCG, van den Bosch MAAJ, Lam MGEH. Safety analysis of holmium-166 microsphere scout dose imaging during radioembolisation work-up: a cohort study. Eur Radiol. 2018;28:920–8. https://doi.org/10.1007/s00330-017-4998-2.

5. Smits MLJ, Dassen MG, Prince JF, Braat AJAT, Beijst C, Bruijnen RCG, et al. The superior predictive value of 166Ho-scout compared with 99mTc-macroaggregated albumin prior to 166Ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imaging. 2020;47:798–806. https://doi.org/10.1007/s00259-019-04460-y.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3