Author:
Songnian Zhao,Qi Zou,Chang Liu,Xuemin Liu,Shousi Sun,Jun Qiu
Abstract
Abstract
Background
How it is possible to “faithfully” represent a three-dimensional stereoscopic scene using Cartesian coordinates on a plane, and how three-dimensional perceptions differ between an actual scene and an image of the same scene are questions that have not yet been explored in depth. They seem like commonplace phenomena, but in fact, they are important and difficult issues for visual information processing, neural computation, physics, psychology, cognitive psychology, and neuroscience.
Results
The results of this study show that the use of plenoptic (or all-optical) functions and their dual plane parameterizations can not only explain the nature of information processing from the retina to the primary visual cortex and, in particular, the characteristics of the visual pathway’s optical system and its affine transformation, but they can also clarify the reason why the vanishing point and line exist in a visual image. In addition, they can better explain the reasons why a three-dimensional Cartesian coordinate system can be introduced into the two-dimensional plane to express a real three-dimensional scene.
Conclusions
1. We introduce two different mathematical expressions of the plenoptic functions, P
w
and P
v
that can describe the objective world. We also analyze the differences between these two functions when describing visual depth perception, that is, the difference between how these two functions obtain the depth information of an external scene.
2. The main results include a basic method for introducing a three-dimensional Cartesian coordinate system into a two-dimensional plane to express the depth of a scene, its constraints, and algorithmic implementation. In particular, we include a method to separate the plenoptic function and proceed with the corresponding transformation in the retina and visual cortex.
3. We propose that size constancy, the vanishing point, and vanishing line form the basis of visual perception of the outside world, and that the introduction of a three-dimensional Cartesian coordinate system into a two dimensional plane reveals a corresponding mapping between a retinal image and the vanishing point and line.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献