Modulation of TTX-sensitive voltage-dependent Na+ channels by β-bungarotoxin in rat cerebellar neurons

Author:

Guo Da,Xiang Wei,Seebahn Angela,Becker Cord-Michael,Strauß Olaf

Abstract

Abstract Background The modulation of voltage-dependent Na+ channels by lipid metabolites such as arachidonic acid or eicosanoids plays a role in physiological functions as well as in degenerative diseases. So far TTX-resistant channels were found mainly to be regulated by lipid metabolites. Results We investigated the lipid-dependent modulation of TTX-sensitive (TTX-s) Na+ channels using β-bungarotoxin (β-BuTX, 10 pM), which has an intrinsic phospholipase-A2 activity, and indomethacin (10 μM), which blocks cyclooxygenase activity in primary cerebellar neurons. To investigate TTX-s Na+ channels, whole-currents were measured under K+-free conditions and blocked by 10 nM TTX. The currents resulting from calculating the difference of currents measured in the presence and the absence of TTX were used for further analysis. Application of indomethacin mainly changed the current kinetics but has only minor effects on voltage-dependence. In contrast β-BuTX increased the maximal current amplitude and shifted the voltage-dependent activation towards more negative potentials. The effects of β-BuTX were blocked by indomethacin. Analysis of lipid metabolites which accumulate by treatment with β-BuTX using MALDI-TOF MS showed an increase of cyclooxygenase reaction products in relation to arachidonic acid. Conclusions In summary, we conclude that TTX-sensitive Na+ channels can be directly modulated by cyclooxygenase reaction products leading to higher activity at less depolarized potentials and subsequent higher excitability of neurons. Since activation of cyclooxygenase is also involved in pathways leading to apoptotic cells death this could play a role in degenerative diseases of the CNS and highlights a possible protective effect of cyclooxygenase inhibition.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3