Transcriptomic signature of Bexarotene (Rexinoid LGD1069) on mammary gland from three transgenic mouse mammary cancer models

Author:

Abba Martin C,Hu Yuhui,Levy Carla C,Gaddis Sally,Kittrell Frances S,Zhang Yun,Hill Jamal,Bissonnette Reid P,Medina Daniel,Brown Powel H,Aldaz C Marcelo

Abstract

Abstract Background The rexinoid bexarotene (LGD1069, Targretin) is a highly selective retinoid × receptor (RXR) agonist that inhibits the growth of pre-malignant and malignant breast cells. Bexarotene was shown to suppress the development of breast cancer in transgenic mice models without side effects. The chemopreventive effects of bexarotene are due to transcriptional modulation of cell proliferation, differentiation and apoptosis. Our goal in the present study was to obtain a profile of the genes modulated by bexarotene on mammary gland from three transgenic mouse mammary cancer models in an effort to elucidate its molecular mechanism of action and for the identification of biomarkers of effectiveness. Methods Serial analysis of gene expression (SAGE) was employed to profile the transcriptome of p53-null, MMTV-ErbB2, and C3(1)-SV40 mammary cells obtained from mice treated with bexarotene and their corresponding controls. Results This resulted in a dataset of approximately 360,000 transcript tags representing over 20,000 mRNAs from a total of 6 different SAGE libraries. Analysis of gene expression changes induced by bexarotene in mammary gland revealed that 89 genes were dysregulated among the three transgenic mouse mammary models. From these, 9 genes were common to the three models studied. Conclusion Analysis of the indicated core of transcripts and protein-protein interactions of this commonly modulated genes indicate two functional modules significantly affected by rexinoid bexarotene related to protein biosynthesis and bioenergetics signatures, in addition to the targeting of cancer-causing genes related with cell proliferation, differentiation and apoptosis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3