Review on the succession process of Pinus densiflora forests in South Korea: progressive and disturbance-driven succession

Author:

Choung YeonsookORCID,Lee Jongsung,Cho Soyeon,Noh Jaesang

Abstract

Abstract Background Most of the Pinus densiflora forests, occupying the largest area, have been restored in South Korea since the 1970s. As young pioneer forests, the succession process is under way. Since the forests are distributed nationwide and are vulnerable to disturbances, the process may differ depending on the geography and/or site conditions. Therefore, we reviewed the direction, the seral communities, and the late-successional species of progressive and disturbance-driven succession nationwide in the cool-temperate zone through meta-analysis and empirical observations. Main text As a result of a meta-analysis of the direct succession and vertical structure, we found that the P. densiflora forest is in a directionally progressive succession, changing to the broadleaved forest after forming a mixed forest with its overwhelming successor, Quercus species (particularly Q. mongolica and Q. serrata). In dry stands in a relative sense, the Quercus species was favored occupying over 80% of the abundance of the succeeding species. Therefore, in dry stands, it is presumed that Quercus-dominated stage would last for a long time due to the current dominance and long life span, and eventually, it settles as Quercus-broadleaved forest with a site change. Contrary to this, it is presumed that in mesic stands where Quercus species do not occur or have low abundance, the late-successional broadleaved species settle early to form a co-dominant forest with multiple species. Due to geographical limits, the species composition of the two late-successional forests is different. Disturbances such as insect pests and fire retrogressed vulnerable P. densiflora forest for a while. However, it was mostly restored to the Quercus forest and is expected to be incorporated in the pathway of the dry stand. Conclusions We revealed the succession process of P. densiflora forests according to geography and moisture and found that stand moisture had a decisive effect on the species and abundance of the successor. Although the P. densiflora forest is undergoing structural changes, the forest is still young; so within a few decades, physiognomy is not likely to change. Therefore, the decrease in the forest area may be due to other causes such as disturbances and forest conversion rather than due to succession.

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference139 articles.

1. Abrams MD, Scott ML. Disturbance-mediated accelerated succession in two Michigan forest types. For Sci. 1989;35(1):42–9.

2. Ahn HC, Cho HS. The forest community structure and dynamics in Mt. Yeonhwa Provincial Park. J Agric Tech Res. 2000;13:87–95 (In Korean).

3. An HC, Choo GC. Vegetation structure of the Woongseokbong in the Jirisan (Mt.). Korean J Environ Ecol. 2010;24(5):547–55 (In Korean).

4. Back SJ, Kang HK, Kim SH. Vegetation structure and management planning of Yongha Gugok in Woraksan National Park. Korean J Environ Ecol. 2013;27(4):487–97 (In Korean).

5. Bae JS, Kim ES. Understanding forest status of the Korean Peninsula in 1910: a focus on digitization of Joseonimyabunpodo (The Korean Peninsula Forest Distribution Map). J Korean Soc For Sci. 2019;108(3):418–28 (In Korean).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3