Signal enhancement for communication systems used by fire fighters

Author:

Brodersen Michael,Volmer Achim,Schmidt GerhardORCID

Abstract

AbstractSo-called full-face masks are essential for fire fighters to ensure respiratory protection in smoke diving incidents. While such masks are absolutely necessary for protection purposes on one hand, they impair the voice communication of fire fighters drastically on the other hand. For this reason communication systems should be used to amplify the speech and, therefore, to improve the communication quality. This paper gives an overview of communication enhancement techniques for masks based on digital signal processing. The presented communication system picks up the speech signal by a microphone in the mask, enhance it, and play back the amplified signal by loudspeakers located on the outside of such masks. Since breathing noise is also picked up by the microphone, it’s advantageous to recognize and suppress it – especially since breathing noise is very loud (usually much louder than the recorded voice). A voice activity detection distinguishes between side talkers, pause, breathing out, breathing in, and speech. It ensures that only speech components are played back. Due to the fact that the microphone is located close to the loudspeakers, the output signals are coupling back into the microphone and feedback may occur even at moderate gains. This can be reduced by feedback reduction (consisting of cancellation and suppression approaches). To enhance the functionality of the canceler a decorrelation stage can be applied to the enhanced signal before loudspeaker playback. As a consequence of all processing stages, the communication can be improved significantly, as the results of measurements of real-time mask systems show.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Reference56 articles.

1. https://www.draeger.com/en_uk/Products/Quaestor-7000. Accessed 11 Mar 2018.

2. https://www.draeger.com/en_uk/Products/Panorama-Nova. Accessed. 11 Mar 2018.

3. https://www.draeger.com/en_uk/Products/FPS-7000. Accessed 11 Mar 2018.

4. https://www.draeger.com/en_uk/Products/FPS-COM-7000. Accessed 11 Mar 2018.

5. J. Benesty, D. R. Morgan, M. M. Sondhi, A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation. IEEE Trans Speech Audio Process. 6(2), 156–165 (1998).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3