Localization of the Carnation Italian ringspot virus replication protein p36 to the mitochondrial outer membrane is mediated by an internal targeting signal and the TOM complex

Author:

Hwang Yeen Ting,McCartney Andrew W,Gidda Satinder K,Mullen Robert T

Abstract

Abstract Background Carnation Italian ringspot virus (CIRV) is a positive-strand RNA virus that causes massive structural alterations of mitochondria in infected host cells, the most conspicuous being the formation of numerous internal vesicles/spherules that are derived from the mitochondrial outer membrane and serve as the sites for viral RNA replication. While the membrane-bound components of the CIRV replication complex, including a 36-kD RNA-binding protein (p36), are known to be essential for these changes in mitochondrial morphology and are relatively well characterized in terms of their roles in nascent viral RNA synthesis, how these proteins are specifically targeted and inserted into mitochondria is poorly defined. Results Here we report on the molecular signal responsible for sorting p36 to the mitochondrial outer membrane. Using a combination of gain-of-function assays with portions of p36 fused to reporter proteins and domain-swapping assays with p36 and another closely-related viral RNA-binding protein, p33, that sorts specifically to the peroxisomal boundary membrane, we show that the mitochondrial targeting information in p36 resides within its two transmembrane domains (TMDs) and intervening hydrophilic loop sequence. Comprehensive mutational analysis of these regions in p36 revealed that the primary targeting determinants are the moderate hydrophobicity of both TMDs and the positively-charged face of an amphipathic helix within the intervening loop sequence. We show also using bimolecular fluorescence complementation (BiFC) that p36 interacts with certain components of the translocase complex in the mitochondrial outer membrane (TOM), but not with the sorting and assembly machinery (SAM). Conclusion Our results provide insight to how viruses, such as CIRV, exploit specific host-cell protein sorting pathways to facilitate their replication. The characterization of the targeting and insertion of p36 into the mitochondrial outer membrane also sheds light on the mechanisms involved in sorting of host-cell membrane proteins to mitochondria, a process that has been largely unexplored in plants.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

Reference99 articles.

1. Salonen A, Ahola T, Kääriäinen L: Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol. 2005, 285: 139-173.

2. Mackenzie J: Wrapping things up about virus RNA replication. Traffic. 2005, 6: 967-977.

3. Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C: Virus factories: association of cell organelles for viral replication and morphogenesis. Biol Cell. 2005, 97: 147-172.

4. Martelli GP, Gallitelli G, Russo M: The plant viruses: polyhedral virions with monopartite RNA genomes. Tombuviruses. Edited by: Koenig R. 1988, Plenum Publishing Corp, New York, 13-72.

5. Mullen RT, Gidda SK: The role of peroxisomes in viral replication. The peroxisome: orchestrating important developmental decisions from inside the cell. Edited by: Titorenko VI, Terlecky SR. 2008, Research Signpost

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3