Global-scale modeling of early factors and country-specific trajectories of COVID-19 incidence: a cross-sectional study of the first 6 months of the pandemic

Author:

Ghosh Sujoy,Roy Saikat Sinha

Abstract

Abstract Background Studies examining factors responsible for COVID-19 incidence have been mostly focused at the national or sub-national level. A global-level characterization of contributing factors and temporal trajectories of disease incidence is currently lacking. Here we conducted a global-scale analysis of COVID-19 infections to identify key factors associated with early disease incidence. Additionally, we compared longitudinal trends of COVID-19 incidence at a per-country level, and classified countries based on COVID-19 incidence trajectories and effects of lockdown responses. Methods This is an observational cross-sectional study covering COVID-19 incidence over the first 6 months of the pandemic (Jan 1, 2020 to June 30, 2020). A retrospective analysis was performed using publicly available data for total confirmed COVID-19 cases by country, and using recent data on demographic, meteorological, economic and health-related indicators per country. Data was analyzed in a regression modeling framework. Longitudinal trends were assessed via linear and non-linear model fitting. Competing models of disease trajectories were ranked by the Akaike’s Information Criterion (AIC). A novel approach involving hierarchical clustering was developed to classify countries based on the effects of lockdown measures on new COVID-19 caseloads surrounding the lockdown period. Results Univariate analysis identified 11 variables (employments in the agriculture, service and industrial sectors, percent population residing in urban areas, population age, number of visitors, and temperatures in the months of Jan-Apr) as independently associated with COVID-19 infections at a global level (variable p < 1E-05). Multivariable analysis identified a 5-variable model (percent urban population, percent employed in agriculture, population density, percent population aged 15–64 years, and temperature in March) as optimal for explaining global variations in COVID-19 (model adjusted R-squared = 0.68, model p < 2.20E-16). COVID-19 case trajectories for most countries were best captured by a log-logistic model, as determined by AIC estimates. Six predominant country clusters were identified when characterizing the effects of lockdown intervals on variations in COVID-19 new cases per country. Conclusions Globally, economic and meteorological factors are important determinants of early COVID-19 incidence. Analysis of longitudinal trends and lockdown effects on COVID-19 highlights important nuances in country-specific responses to infections. These results provide valuable insights into disease incidence at a per-country level, possibly allowing for more informed decision making by individual governments in future disease outbreaks.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3