The predictive power of geographic health care utilization for unintentional fatal fall rates

Author:

Crowson Matthew GordonORCID,Beyea Jason A.,Cottrell Justin,Karmali Faisal,Lampasona Giovanni,Saunders James E.,Lewis Richard F.

Abstract

Abstract Background Falls are the leading cause of fatal and nonfatal injuries among adults over 65 years old. The increase in fall mortality rates is likely multifactorial. With a lack of key drivers identified to explain rising rates of death from falls, accurate predictive modelling can be challenging, hindering evidence-based health resource and policy efforts. The objective of this work is to examine the predictive power of geographic utilization and longitudinal trends in mortality from unintentional falls amongst different demographic and geographic strata. Methods This is a nationwide, retrospective cohort study using the United States Centers for Disease Control (CDC) Web-based Injury Statistics Query and Reporting System (WISQARS) database. The exposure was death from an unintentional fall as determined by the CDC. Outcomes included aggregate and trend crude and age-adjusted death rates. Health care utilization, reimbursement, and cost metrics were also compared. Results Over 2001 to 2018, 465,486 total deaths due to unintentional falls were recorded with crude and age-adjusted rates of 8.42 and 7.76 per 100,000 population respectively. Comparing age-adjusted rates, males had a significantly higher age-adjusted death rate (9.89 vs. 6.17; p <  0.00001), but both male and female annual age-adjusted mortality rates are expected to rise (Male: + 0.25 rate/year, R2= 0.98; Female: + 0.22 rate/year, R2= 0.99). There were significant increases in death rates commensurate with increasing age, with the adults aged 85 years or older having the highest aggregate (201.1 per 100,000) and trending death rates (+ 8.75 deaths per 100,000/year, R2= 0.99). Machine learning algorithms using health care utilization data were accurate in predicting geographic age-adjusted death rates. Conclusions Machine learning models have high accuracy in predicting geographic age-adjusted mortality rates from health care utilization data. In the United States from 2001 through 2018, adults aged 85+ years carried the highest death rate from unintentional falls and this rate is forecasted to accelerate.

Funder

U.S. National Library of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3