Predicting mammographic density with linear ultrasound transducers

Author:

Behrens Annika,Fasching Peter A.,Schwenke Eva,Gass Paul,Häberle Lothar,Heindl Felix,Heusinger Katharina,Lotz Laura,Lubrich Hannah,Preuß Caroline,Schneider Michael O.,Schulz-Wendtland Rüdiger,Stumpfe Florian M.,Uder Michael,Wunderle Marius,Zahn Anna L.,Hack Carolin C.,Beckmann Matthias W.,Emons Julius

Abstract

Abstract Background High mammographic density (MD) is a risk factor for the development of breast cancer (BC). Changes in MD are influenced by multiple factors such as age, BMI, number of full-term pregnancies and lactating periods. To learn more about MD, it is important to establish non-radiation-based, alternative examination methods to mammography such as ultrasound assessments. Methods We analyzed data from 168 patients who underwent standard-of-care mammography and performed additional ultrasound assessment of the breast using a high-frequency (12 MHz) linear probe of the VOLUSON® 730 Expert system (GE Medical Systems Kretztechnik GmbH & Co OHG, Austria). Gray level bins were calculated from ultrasound images to characterize mammographic density. Percentage mammographic density (PMD) was predicted by gray level bins using various regression models. Results Gray level bins and PMD correlated to a certain extent. Spearman’s ρ ranged from − 0.18 to 0.32. The random forest model turned out to be the most accurate prediction model (cross-validated R2, 0.255). Overall, ultrasound images from the VOLUSON® 730 Expert device in this study showed limited predictive power for PMD when correlated with the corresponding mammograms. Conclusions In our present work, no reliable prediction of PMD using ultrasound imaging could be observed. As previous studies showed a reasonable correlation, predictive power seems to be highly dependent on the device used. Identifying feasible non-radiation imaging methods of the breast and their predictive power remains an important topic and warrants further evaluation. Trial registration 325-19 B (Ethics Committee of the medical faculty at Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany).

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3