PRP significantly promotes the adhesion and migration of vascular smooth muscle cells on stent material

Author:

Wu Yin-Di,Jiang Hong-Jing,Zhou Hao-Hao,Xu Jian-Yi,Liu Qing,Sun Xu-Heng,Wu Yue-Heng,Lin Zhan-Yi

Abstract

Abstract Background The adhesion and survival state of cells on scaffold material is a major problem in tissue-engineered blood vessel (TEBV) culture. Platelet-rich plasma (PRP) contains a large amount of biologically active factors and fibrin, which is expected to play an important role in TEBV culture. Purpose To combine PRP with cells and scaffold material to promote cell adhesion and biological activity on the scaffold material. Methods The adhesion status and migration of SMCs under the optimal concentration suitable for SMC growth and the optimal concentration of PRP were examined by scanning electron microscopy, HE staining, CCK-8 assays, qPCR, WB, and other experimental methods and compared with those under the conventional culture (20% FBS); finally, the effect of PRP on the deposition of ECM in vascular tissue engineering culture was verified by three-dimensional culture. Results PRP at 20% is a suitable concentration for SMCs. Compared with the control group, the 20% PRP group had better migration, and the number of SMC adhesions was significantly higher than that of the control group. In addition, collagen deposition in the experimental group was significantly higher than that in the control group. Conclusion PRP (20%) can promote SMC adhesion, migration, and collagen deposition on the scaffold material.

Funder

The NSFC Incubation Program of GDPH

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3