Multi-omics cluster defines the subtypes of CRC with distinct prognosis and tumor microenvironment

Author:

Ma Yuan,Li Jing,Zhao Xu,Ji Chao,Hu Weibin,Ma YanFang,Qu Fengyi,Sun Yuchen,Zhang Xiaozhi

Abstract

Abstract Background Colorectal cancer (CRC) is a complex malignancy characterized by diverse molecular profiles, clinical outcomes, and limited precision in prognostic markers. Addressing these challenges, this study utilized multi-omics data to define consensus molecular subtypes in CRC and elucidate their association with clinical outcomes and underlying biological processes. Methods Consensus molecular subtypes were obtained by applying ten integrated multi-omics clustering algorithms to analyze TCGA-CRC multi-omics data, including mRNA, lncRNA, miRNA, DNA methylation CpG sites, and somatic mutation data. The association of subtypes with prognoses, enrichment functions, immune status, and genomic alterations were further analyzed. Next, we conducted univariate Cox and Lasso regression analyses to investigate the potential prognostic application of biomarkers associated with multi-omics subtypes derived from weighted gene co-expression network analysis (WGCNA). The function of one of the biomarkers MID2 was validated in CRC cell lines. Results Two CRC subtypes linked to distinct clinical outcomes were identified in TCGA-CRC cohort and validated with three external datasets. The CS1 subtype exhibited a poor prognosis and was characterized by higher tumor-related Hallmark pathway activity and lower metabolism pathway activity. In addition, the CS1 was predicted to have less immunotherapy responder and exhibited more genomic alteration compared to CS2. Then a prognostic model comprising five genes was established, with patients in the high-risk group showing substantial concordance with the CS1 subtype, and those in the low-risk group with the CS2 subtype. The gene MID2, included in the prognostic model, was found to be correlated with epithelial–mesenchymal transition (EMT) pathway and distinct DNA methylation patterns. Knockdown of MID2 in CRC cells resulted in reduced colony formation, migration, and invasion capacities. Conclusion The integrative multi-omics subtypes proposed potential biomarkers for CRC and provided valuable knowledge for precision oncology.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3