Circulating microRNAs and hepcidin as predictors of iron homeostasis and anemia among school children: a biochemical and cross-sectional survey analysis

Author:

Al-Rawaf Hadeel A.ORCID,Gabr Sami A.ORCID,Iqbal AmirORCID,Alghadir Ahmad H.ORCID

Abstract

Abstract Background MicroRNAs (miRNAs) can control several biological processes. Thus, the existence of these molecules plays a significant role in regulating human iron metabolism or homeostasis. Purpose The study aimed to determine the role of circulating microRNAs and hepcidin in controlling iron homeostasis and evaluating possible anemia among school children. Methods The study was based on a biochemical and cross-sectional survey study that included three hundred fifty school children aged 12–18 years old. RT–PCR and immunoassay analysis were accomplished to estimate iron concentration, Hgb, serum ferritin (SF), soluble transferrin receptor (sTfR), total body iron stores (TIBs), total oxidative stress (TOS), total antioxidant capacity (TAC), α-1-acid glycoprotein (AGP), high sensitive C-reactive protein (hs-CRP), and miRNAs; miR-146a, miR-129b, and miR-122 in 350 school adolescents. Results Iron disorders were cross-sectionally predicted in 28.54% of the study population; they were classified into 14.26% with ID, 5.7% with IDA, and 8.6% with iron overload. The overall proportion of iron depletion was significantly higher in girls (20.0%) than in boys (8.6%). MicroRNAs; miR-146a, miR-125b, and miR-122 were significantly upregulated with lower hepcidin expression in adolescence with ID and IDA compared to iron-overloaded subjects, whereas downregulation of these miRNAs was linked with higher hepcidin. Also, a significant correlation was recorded between miRNAs, hepcidin levels, AGP, hs-CRP, TAC, and other iron-related indicators. Conclusion Molecular microRNAs such as miR-146a, miR-125b, and miR-122 were shown to provide an additional means of controlling or regulating cellular iron uptake or metabolism either via the oxidative stress pathway or regulation of hepcidin expression via activating genes encoding Hfe and Hjv activators, which promote iron regulation. Thus, circulating miRNAs as molecular markers and serum hepcidin could provide an additional means of controlling or regulating cellular iron and be associated as valuable markers in diagnosing and treating cases with different iron deficiencies.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference101 articles.

1. Ezzati M, Lopez AD, Rodgers A, Murray CJ. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors: World Health Organization; 2004.

2. DellaValle DM, Haas JD. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med Sci Sports Exerc. 2014;46:1204–15.

3. Lanas A, Andrews JM, Lau J, Toruner M, Bromley SE, Gralnek IM. Management of iron-deficiency anemia following acute gastrointestinal hemorrhage: a narrative analysis and review. J Gastroenterol Hepatol. 2023;38(1):23–33.

4. Hall A, Bobrow E, Brooker S, et al. Anaemia in schoolchildren in eight countries in Africa and Asia. Public Health Nutr. 2000;4(3):749–56.

5. Horton S, Ross J. The economics of iron deficiency. Food Policy. 2003;28(1):51–75.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3