Author:
Piryaei Zeynab,Salehi Zahra,Ebrahimie Esmaeil,Ebrahimi Mansour,Kavousi Kaveh
Abstract
Abstract
Background
The largest group of patients with breast cancer are estrogen receptor-positive (ER+) type. The estrogen receptor acts as a transcription factor and triggers cell proliferation and differentiation. Hence, investigating ER-DNA interaction genomic regions can help identify genes directly regulated by ER and understand the mechanism of ER action in cancer progression.
Methods
In the present study, we employed a workflow to do a meta-analysis of ChIP-seq data of ER+ cell lines stimulated with 10 nM and 100 nM of E2. All publicly available data sets were re-analyzed with the same platform. Then, the known and unknown batch effects were removed. Finally, the meta-analysis was performed to obtain meta-differentially bound sites in estrogen-treated MCF7 cell lines compared to vehicles (as control). Also, the meta-analysis results were compared with the results of T47D cell lines for more precision. Enrichment analyses were also employed to find the functional importance of common meta-differentially bound sites and associated genes among both cell lines.
Results
Remarkably, POU5F1B, ZNF662, ZNF442, KIN, ZNF410, and SGSM2 transcription factors were recognized in the meta-analysis but not in individual studies. Enrichment of the meta-differentially bound sites resulted in the candidacy of pathways not previously reported in breast cancer. PCGF2, HNF1B, and ZBED6 transcription factors were also predicted through the enrichment analysis of associated genes. In addition, comparing the meta-analysis results of both ChIP-seq and RNA-seq data showed that many transcription factors affected by ER were up-regulated.
Conclusion
The meta-analysis of ChIP-seq data of estrogen-treated MCF7 cell line leads to the identification of new binding sites of ER that have not been previously reported. Also, enrichment of the meta-differentially bound sites and their associated genes revealed new terms and pathways involved in the development of breast cancer which should be examined in future in vitro and in vivo studies.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics