MiRNA-disease interaction prediction based on kernel neighborhood similarity and multi-network bidirectional propagation

Author:

Ma Yingjun,He Tingting,Ge Leixin,Zhang Chenhao,Jiang Xingpeng

Abstract

Abstract Background Studies have shown that miRNAs are functionally associated with the development of many human diseases, but the roles of miRNAs in diseases and their underlying molecular mechanisms have not been fully understood. The research on miRNA-disease interaction has received more and more attention. Compared with the complexity and high cost of biological experiments, computational methods can rapidly and efficiently predict the potential miRNA-disease interaction and can be used as a beneficial supplement to experimental methods. Results In this paper, we proposed a novel computational model of kernel neighborhood similarity and multi-network bidirectional propagation (KNMBP) for miRNA-disease interaction prediction, especially for new miRNAs and new diseases. First, we integrated multiple data sources of diseases and miRNAs, respectively, to construct a novel disease semantic similarity network and miRNA functional similarity network. Secondly, based on the modified miRNA-disease interactions, we use the kernel neighborhood similarity algorithm to calculate the disease kernel neighborhood similarity and the miRNA kernel neighborhood similarity. Finally, we utilize bidirectional propagation algorithm to predict the miRNA-disease interaction scores based on the integrated disease similarity network and miRNA similarity network. As a result, the AUC value of 5-fold cross validation for all interactions by KNMBP is 0.93126 based on the commonly used dataset, and the AUC values for all interactions, for all miRNAs, for all disease is 0.93795、0.86363、0.86937 based on another dataset extracted by ourselves, which are higher than other state-of-the-art methods. In addition, our model has good parameter robustness. The case study further demonstrated the predictive performance of the model for novel miRNA-disease interactions. Conclusions Our KNMBP algorithm efficiently integrates multiple omics data from miRNAs and diseases to stably and efficiently predict potential miRNA-disease interactions. It is anticipated that KNMBP would be a useful tool in biomedical research.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3