Associative gene networks reveal novel candidates important for ADHD and dyslexia comorbidity

Author:

Hongyao HE,Chun JI,Xiaoyan Gao,Fangfang Liu,Jing Zhang,Lin Zhong,Pengxiang Zuo,Zengchun Li

Abstract

Abstract Background Attention deficit hyperactivity disorder (ADHD) is commonly associated with developmental dyslexia (DD), which are both prevalent and complicated pediatric neurodevelopmental disorders that have a significant influence on children’s learning and development. Clinically, the comorbidity incidence of DD and ADHD is between 25 and 48%. Children with DD and ADHD may have more severe cognitive deficiencies, a poorer level of schooling, and a higher risk of social and emotional management disorders. Furthermore, patients with this comorbidity are frequently treated for a single condition in clinical settings, and the therapeutic outcome is poor. The development of effective treatment approaches against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and treatment. In this study, we developed bioinformatical methodology for the analysis of the comorbidity of these two diseases. As such, the search for candidate genes related to the comorbid conditions of ADHD and DD can help in elucidating the molecular mechanisms underlying the comorbid condition, and can also be useful for genotyping and identifying new drug targets. Results Using the ANDSystem tool, the reconstruction and analysis of gene networks associated with ADHD and dyslexia was carried out. The gene network of ADHD included 599 genes/proteins and 148,978 interactions, while that of dyslexia included 167 genes/proteins and 27,083 interactions. When the ANDSystem and GeneCards data were combined, a total of 213 genes/proteins for ADHD and dyslexia were found. An approach for ranking genes implicated in the comorbid condition of the two diseases was proposed. The approach is based on ten criteria for ranking genes by their importance, including relevance scores of association between disease and genes, standard methods of gene prioritization, as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analyzed genes. Among the top 20 genes with the highest priority DRD2, DRD4, CNTNAP2 and GRIN2B are mentioned in the literature as directly linked with the comorbidity of ADHD and dyslexia. According to the proposed approach, the genes OPRM1, CHRNA4 and SNCA had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the most relevant genes are involved in biological processes related to signal transduction, positive regulation of transcription from RNA polymerase II promoters, chemical synaptic transmission, response to drugs, ion transmembrane transport, nervous system development, cell adhesion, and neuron migration. Conclusions The application of methods of reconstruction and analysis of gene networks is a powerful tool for studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their importance for the comorbid condition of ADHD and dyslexia was employed to predict genes that play key roles in the development of the comorbid condition. The results can be utilized to plan experiments for the identification of novel candidate genes and search for novel pharmacological targets.

Funder

The National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3