Novel autosomal dominant TMC1 variants linked to hearing loss: insight into protein-lipid interactions

Author:

Cho Sung Ho,Yun Yejin,Lee Dae Hee,Cha Joo Hyun,Lee So Min,Lee Jehyun,Suh Myung Hwan,Lee Jun Ho,Oh Seung-Ha,Park Moo Kyun,Lee Sang-Yeon

Abstract

Abstract Background TMC1, which encodes transmembrane channel-like protein 1, forms the mechanoelectrical transduction (MET) channel in auditory hair cells, necessary for auditory function. TMC1 variants are known to cause autosomal dominant (DFNA36) and autosomal recessive (DFNB7/11) non-syndromic hearing loss, but only a handful of TMC1 variants underlying DFNA36 have been reported, hampering analysis of genotype-phenotype correlations. Methods In this study, we retrospectively reviewed 338 probands in an in-house database of genetic hearing loss, evaluating the clinical phenotypes and genotypes of novel TMC1 variants associated with DFNA36. To analyze the structural impact of these variants, we generated two structural models of human TMC1, utilizing the Cryo-EM structure of C. elegans TMC1 as a template and AlphaFold protein structure database. Specifically, the lipid bilayer-embedded protein database was used to construct membrane-embedded models of TMC1. We then examined the effect of TMC1 variants on intramolecular interactions and predicted their potential pathogenicity. Results We identified two novel TMC1 variants related to DFNA36 (c.1256T > C:p.Phe419Ser and c.1444T > C:p.Trp482Arg). The affected subjects had bilateral, moderate, late-onset, progressive sensorineural hearing loss with a down-sloping configuration. The Phe419 residue located in the transmembrane domain 4 of TMC1 faces outward towards the channel pore and is in close proximity to the hydrophobic tail of the lipid bilayer. The non-polar-to-polar variant (p.Phe419Ser) alters the hydrophobicity in the membrane, compromising protein-lipid interactions. On the other hand, the Trp482 residue located in the extracellular linker region between transmembrane domains 5 and 6 is anchored to the membrane interfaces via its aromatic rings, mediating several molecular interactions that stabilize the structure of TMC1. This type of aromatic ring-based anchoring is also observed in homologous transmembrane proteins such as OSCA1.2. Conversely, the substitution of Trp with Arg (Trp482Arg) disrupts the cation-π interaction with phospholipids located in the outer leaflet of the phospholipid bilayer, destabilizing protein-lipid interactions. Additionally, Trp482Arg collapses the CH-π interaction between Trp482 and Pro511, possibly reducing the overall stability of the protein. In parallel with the molecular modeling, the two mutants degraded significantly faster compared to the wild-type protein, compromising protein stability. Conclusions This results expand the genetic spectrum of disease-causing TMC1 variants related to DFNA36 and provide insight into TMC1 transmembrane protein-lipid interactions.

Funder

SNUH Kun-hee Lee Child Cancer & Rare Disease Project

SNUH Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3