Author:
Peng Hao,Bai Huili,Pan Yan,Li Jun,Pei Zhe,Liao Yuying,Wu Cuilan,Li Changting,Tao Li,Zhong Shuhong,Ma Chunxia,Chen Zhongwei,Li Xiaoning,Gong Yu,Wang Leping,Li Fengsheng
Abstract
Abstract
Background
Cattle industry is critical for China’s livestock industry, whereas E. coli infection and relevant diseases could lead huge economic loss. Traditional mammalian models would be costly, time consuming and complicated to study pathological changes of bovine E. coli. There is an urgent need for a simple but efficient animal model to quantitatively evaluate the pathological changes of bovine-derived E. coli in vivo. Caenorhabditis elegans (C. elegans) has a broad host range of diverse E. coli strains with advantages, including a short life cycle, a simple structure, a transparent body which is easily visualized, a well-studied genetic map, an intrinsic immune system which is conservable with more complicated mammalians.
Results
Here, we considered that O126 was the dominant serotype, and a total of 19 virulence factors were identified from 41 common E. coli virulence factors. Different E. coli strains with diverse pathogenicity strengths were tested in C. elegans in E. coli with higher pathogenicity (EC3/10), Nsy-1, Sek-1 and Pmk-1 of the p38 MAPK signaling pathway cascade and the expression of the antimicrobial peptides Abf-3 and Clec-60 were significantly up-regulated comparing with other groups. E. coli with lower pathogenicity (EC5/13) only activated the expression of Nsy-1 and Sek-1 genes in the p38 MAPK signaling pathway, Additionally, both groups of E. coli strains caused significant upregulation of the antimicrobial peptide Spp-1.
Conclusion
Thirteen E. coli strains showed diverse pathogenicity in nematodes and the detection rate of virulence factors did not corresponding to the virulence in nematodes, indicating complex pathogenicity mechanisms. We approved that C. elegans is a fast and convenient detection model for pathogenic bacteria virulence examinations.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献