Size-dependent activity of silver nanoparticles on the morphological switch and biofilm formation of opportunistic pathogenic yeasts

Author:

Szerencsés Bettina,Igaz Nóra,Tóbiás Ákos,Prucsi Zsombor,Rónavári Andrea,Bélteky Péter,Madarász Dániel,Papp Csaba,Makra Ildikó,Vágvölgyi Csaba,Kónya Zoltán,Pfeiffer Ilona,Kiricsi MónikaORCID

Abstract

Abstract Background Dimorphism and biofilm formation are important virulence factors of some opportunistic human pathogenic yeasts. Such species commensally colonize skin or mucosal surfaces generally in yeast form, but under particular circumstances, convert into virulent hyphae and disseminate internal organs or cause mucocutaneous infections. The yeast-to-hypha shape-conversion promotes the development of a biofilm, a thick extracellular matrix with sessile cells within. The biofilm is capable to prevent the penetration of antifungal drugs, rendering the surviving biofilm-resident cells intrinsic sources of recurrent infections. The aim of this study was to evaluate the ability of silver nanoparticles (AgNPs) to attenuate the morphological switch and biofilm formation of several opportunistic pathogenic yeasts and to determine whether this feature depends on the nanoparticle size. Results AgNPs in three different sizes were prepared by chemical reduction approach and characterized by transmission electron microscopy, ultraviolet–visible spectroscopy and dynamic light scattering. The antifungal activity was evaluated by the microdilution method, the inhibitory capacity on biofilm formation and the biofilm degradation ability of differently sized AgNPs was assessed by viability assay. The morphological state of opportunistic pathogenic yeast cells in monoculture and in co-culture with human keratinocytes in the presence of AgNPs was examined by flow cytometry and scanning electron microscopy. All the three AgNPs inhibited the growth of the examined opportunistic pathogenic yeasts, nevertheless, AgNPs with the smallest diameter exhibited the most prominent toxic activities. AgNPs attenuated the biofilm formation in a nanoparticle size-dependent manner; however, their biofilm destruction capacity was negligible. AgNPs with the smallest size exerted the most significant effect on suppressing the morphological change of pathogens in monoculture as well as in a co-culture with keratinocytes. Conclusions Our results confirm that AgNPs are capable to hinder yeast-to-hypha morphological conversion and biofilm formation of opportunistic pathogens and this biological effect of AgNPs is size-dependent.

Funder

Hungarian Government and European Union

Hungarian Goverment and European Union

Hungarian Ministry of Technology and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3