Dynamic metabolic modelling of overproduced protein secretion in Streptomyces lividans using adaptive DFBA

Author:

Valverde Jósé R.ORCID,Gullón Sonia,García-Herrero Clara A.,Campoy Iván,Mellado Rafael P.

Abstract

Abstract Background Streptomyces lividans is an appealing host for the production of proteins of biotechnological interest due to its relaxed exogenous DNA restriction system and its ability to secrete proteins directly to the medium through the major Sec or the minor Tat routes. Often, protein secretion displays non-uniform time-dependent patterns. Understanding the associated metabolic changes is a crucial step to engineer protein production. Dynamic Flux Balance Analysis (DFBA) allows the study of the interactions between a modelled organism and its environment over time. Existing methods allow the specification of initial model and environment conditions, but do not allow introducing arbitrary modifications in the course of the simulation. Living organisms, however, display unexpected adaptive metabolic behaviours in response to unpredictable changes in their environment. Engineering the secretion of products of biotechnological interest has systematically proven especially difficult to model using DFBA. Accurate time-dependent modelling of complex and/or arbitrary, adaptive metabolic processes demands an extended approach to DFBA. Results In this work, we introduce Adaptive DFBA, a novel, versatile simulation approach that permits inclusion of changes in the organism or the environment at any time in the simulation, either arbitrary or interactively responsive to environmental changes. This approach extends traditional DFBA to allow steering arbitrarily complex simulations of metabolic dynamics. When applied to Sec- or Tat-dependent secretion of overproduced proteins in S. lividans, Adaptive DFBA can overcome the limitations of traditional DFBA to reproduce experimental data on plasmid-free, plasmid bearing and secretory protein overproducing S. lividans TK24, and can yield useful insights on the behaviour of systems with limited experimental knowledge such as agarase or amylase overproduction in S. lividans TK21. Conclusions Adaptive DFBA has allowed us to overcome DFBA limitations and to generate more accurate models of the metabolism during the overproduction of secretory proteins in S. lividans, improving our understanding of the underlying processes. Adaptive DFBA is versatile enough to permit dynamical metabolic simulations of arbitrarily complex biotechnological processes.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3