Author:
Fang Xiaoxue,Wang Huaying,Zhao Ling,Wang Manqi,Sun Mingzhou
Abstract
Abstract
Background
The resources of wild ginseng have been reducing sharply, and it is mainly dependent on artificial cultivation in China, Korea and Japan. Based on cultivation modes, cultivated ginseng include understory wild ginseng (the seeds or seedlings of cultivated ginseng were planted under the theropencedrymion without human intervention) and farmland cultivated ginseng (grown in farmland with human intervention). Cultivated ginseng, can only be planted on the same plot of land consecutively for several years owing to soilborne diseases, which is mainly because of the variation in the soil microbial community. In contrast, wild ginseng can grow for hundreds of years. However, the knowledge of rhizosphere microbe communities of the wild ginseng is limited.
Result
In the present study, the microbial communities in rhizosphere soils of the three types of ginseng were analyzed by high-throughput sequencing of 16 S rRNA for bacteria and internal transcribed spacer (ITS) region for fungi. In total, 4,381 bacterial operational taxonomic units (OTUs) and 2,679 fungal OTUs were identified in rhizosphere soils of the three types of ginseng. Among them, the shared bacterial OTUs was more than fungal OTUs by the three types of ginseng, revealing fungal communities were to be more affected than bacterial communities. In addition, the composition of rhizosphere microbial communities and bacterial diversity were similar between understory wild ginseng and wild ginseng. However, higher bacterial diversity and lower fungal diversity were found in rhizosphere soils of wild ginseng compared with farmland cultivated ginseng. Furthermore, the relative abundance of Chloroflexi, Fusarium and Alternaria were higher in farmland cultivated ginseng compared to wild ginseng and understory wild ginseng.
Conclusions
Our results showed that composition and diversity of rhizosphere microbial communities were significantly different in three types of ginseng. This study extended the knowledge pedigree of the microbial diversity populating rhizospheres, and provided insights into resolving the limiting bottleneck on the sustainable development of P. ginseng crops, and even the other crops of Panax.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献