Comparative genomics and genomic diversity of Pseudomonas syringae clade 2b-a in Australia

Author:

Djitro Noel,Roach Rebecca,Mann Rachel,Campbell Paul R.,Rodoni Brendan,Gambley Cherie

Abstract

Abstract Background A zucchini disease outbreak with unusual symptoms associated with Pseudomonas syringae clade 2b was identified in Bundaberg, Australia during autumn 2016. To investigate the genetic diversity of the 11 Australian isolates obtained from the outbreak, the genomes were compared to the publicly available P. syringae strains in phylogroup 2. Results Average nucleotide identity refined the P. syringae clade 2b-a into four clusters (Cluster A, B, C1 and C2), an expansion from the previously identified A, B and C. Australian isolates were in Cluster A, C1 and C2. Genomic analyses highlighted several key factors that may contribute to the virulence of these isolates. Six orthologous groups, including three virulence factors, were associated with P. syringae phylogroup 2 cucurbit-infecting strains. A region of genome plasticity analysis identified a type VI secretion system pathway in clade 2b-a strains which could also contribute to virulence. Pathogenicity assays on isolates KL004-k1, KFR003-1 and 77-4C, as representative isolates of Cluster A, C1 and C2, respectively, determined that all three isolates can infect pumpkin, squash, watermelon and zucchini var. Eva with different levels of disease severity. Subsequently, type III effectors were investigated and four type III effectors (avrRpt2, hopZ5, hopC1 and hopH1) were associated with host range. The hopZ effector family was also predicted to be associated with disease severity. Conclusions This study refined the taxonomy of the P. syringae clade 2b-a, supported the association between effector profile and pathogenicity in cucurbits established in a previous study and provides new insight into important genomic features of these strains. This study also provided a detailed and comprehensive resource for future genomic and functional studies of these strains.

Funder

Hort Innovation

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference54 articles.

1. Hort Innovation: Australian horticulture statistics handbook 2020/21. Sydney: Horticulture Innovation Australian Limited. 2022. https://www.horticulture.com.au/growers/help-your-business-grow/research-reports-publicationsfact-sheets-and-more/grower-resources/ha18002-assets/australian-horticulture-statistics-handbook/.

2. Djitro N, Roach R, Mann R, Rodoni B, Gambley C. Characterization of Pseudomonas syringae isolated from systemic infection of zucchini in Australia. Plant Dis. 2022;106(2):541–8. https://doi.org/10.1094/PDIS-05-21-1039-RE.

3. Newberry EA, Ebrahim M, Timilsina S, Zlatković N, Obradović A, Bull CT, et al. Inference of convergent gene acquisition among Pseudomonas syringae strains isolated from watermelon, cantaloupe, and squash. Frontiers in Microbiology. 2019;10(270). https://doi.org/10.3389/fmicb.2019.00270.

4. Department of Agriculture, Water and the Environment: Final review of import conditions for cucurbitaceous vegetable seeds for sowing. Canberra: Department of Agriculture, Water and the Environment. 2020. https://www.agriculture.gov.au/sites/default/files/documents/final-report-cucurbitaceae-seed-review.pdf.

5. Dutta B, Gitaitis R, Smith S, Langston D Jr. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission. PLOS One. 2014;9(6):e99215-e. https://doi.org/10.1371/journal.pone.0099215.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3