C-terminal mini-PEGylation of a marine peptide N6 had potent antibacterial and anti-inflammatory properties against Escherichia coli and Salmonella strains in vitro and in vivo

Author:

Li Ting,Yang Na,Teng Da,Mao Ruoyu,Hao Ya,Wang Xiumin,Wang Jianhua

Abstract

Abstract Background Enteropathogenic Escherichia coli and Salmonella pullorum are two important groups of zoonotic pathogens. At present, the treatment of intestinal pathogenic bacteria infection mainly relies on antibiotics, which directly inhibit or kill the pathogenic bacteria. However, due to long-term irrational, excessive use or abuse, bacteria have developed different degrees of drug resistance. N6, an arenicin-3 derivative isolated from the lugworm, has potent antibacterial activity and is poorly resistant to enzymatic hydrolysis and distribution in vivo. Polyethylene glycol (PEG) is an extensively studied polymer and commonly used in protein or peptide drugs to improve their therapeutic potential. Here, we modified the N-/C-terminal or Cys residue of N6 with liner PEGn of different lengths (n = 2, 6,12, and 24), and the effects of PEGylation of N6 on the stability, toxicity, bactericidal mechanism, distribution and efficacy were investigated in vitro and in vivo. Results The antimicrobial activity of the peptide showed that PEGylated N6 at the C-terminus (n = 2, N6-COOH-miniPEG) had potent activity against Gram-negative bacteria; PEGylated N6 at the N-terminus and Cys residues showed low or no activity with increasing lengths of PEG. N6-COOH-miniPEG has higher stability in trypsin than the parent peptide-N6. N6-COOH-miniPEG significantly regulated cytokine expression in lipopolysaccharides (LPS)-induced RAW 264.7 cells, and the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β were reduced by 31.21%, 65.62% and 44.12%, respectively, lower than those of N6 (-0.06%, -12.36% and -12.73%); N6-COOH-miniPEG increased the level of IL-10 (37.83%), higher than N6 (-10.21%). The data indicated that N6-COOH-miniPEG has more potent anti-inflammatory and immune-regulatory effect than N6 in LPS-stimulated RAW 264.7 cells. N6-COOH-miniPEG exhibited a much wider biodistribution in mice and prolonged in vivo half-time. FITC-labeled N6-COOH-miniPEG was distributed throughout the body of mice in the range of 0.75 – 2 h after injection, while FITC-labeled N6 only concentrated in the abdominal cavity of mice after injection, and the distribution range was narrow. N6-COOH-miniPEG improved the survival rates of mice challenged with E. coli or S. pullorum, downregulated the levels of TNF-α, IL-6, IL-1β and IL-10 in the serum of LPS-infected mice, and alleviated multiple-organ injuries (the liver, spleen, kidney, and lung), superior to antibiotics, but slightly inferior to N6. Conclusions The antibacterial activity, bactericidal mechanism and cytotoxicity of N6-COOH-miniPEG and N6 were similar. N6-COOH-miniPEG has a higher resistance to trysin than N6. The distribution of N6-COOH-miniPEG in mice was superior to that of N6. In exploring the modulatory effects of antimicrobial peptides on cytokines, N6-COOH-miniPEG had stronger anti-inflammatory and immunomodulatory effects than N6. The results suggested that C-terminal PEGylated N6 may provide an opportunity for the development of effective anti-inflammatory and antibacterial peptides.

Funder

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program (ASTIP) in CAAS

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3