Colonization with non-mycorrhizal culturable endophytic fungi enhances orchid growth and indole acetic acid production

Author:

Shah Sujit,Shah Biva,Sharma Rohit,Rekadwad Bhagwan,Shouche Yogesh S.,Sharma Jyotsna,Pant Bijaya

Abstract

Abstract Background Symbiotic associations of endophytic fungi have been proved by possessing an ability to produce hormones and metabolites for their host plant. Members of the Orchidaceae are obligate mycorrhizal species but a non-mycorrhizal association needs more investigation for their ability to promote plant growth and produce plant growth hormones. In the present study, endophytic fungi were isolated from the roots of Dendrobium longicornu Lindl., to investigate the root colonizing activity and role in plant growth and development. Results Among 23 fungal isolates were identified both by morphological and molecular technique as Penicillium sp., Fusarium sp., Coniochaeta sp., Alternaria sp., and Cladosporium sp. The dominate species were Coniochaeta sp. and Cladosporium sp. The dominant species as per the isolation was Coniochaeta sp. These fungal strains were screened for growth-promoting activity of Cymbidium aloifolium (plantlet) consider as cross genus interaction and Dendrobium longicornu (protocorms) as a host plant in in-vitro condition. Importantly, Cladosporium sp., and Coniochaeta sp. showed successful colonization and peloton formation with roots of C. aloifolium. Moreover, it also enhanced acclimatization of plantlets. Fungal elicitors from nine fungal isolates enhanced the growth of the in vitro grown protocorms of D. longicornu. Key bioactive compounds detected in the fungal colonized plant extract were 2H-pyran-2-one, Cyclopropanecarboxylic acid, Oleic Acid and d-Mannitol, which may have a potential role in plant-microbe interaction. All fungal endophytes were able to synthesize the indole acetic acid (IAA) in presence of tryptophan. Moreover, fungal extract DLCCR7 treated with DL-tryptophan yielded a greater IAA concentration of 43 μg per ml than the other extracts. The iaaM gene involved in IAA synthesis pathway was amplified using iaaM gene primers successfully from Alternaria sp., Cladosporium sp., and Coniochaeta sp. Conclusions Hence, this study confirms the production of IAA by endophytes and demonstrated their host as well as cross-genus plant growth-promoting potential by producing metabolites required for the growth of the plant.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3