Author:
Aghaee Bahareh Lashtoo,Mirzaei Mohammadali Khan,Alikhani Mohammad Yousef,Mojtahedi Ali
Abstract
Abstract
Background
P. aeruginosa is the primary source of hospital-acquired infections. Unfortunately, antibiotic resistance is growing to precariously high levels, making the infections by this pathogen life-threatening and hard to cure. One possible alternative to antibiotics is to use phages. However, the isolation of phages suitable for phage therapy— be lytic, be efficient, and have a broad host range —against some target bacteria has proven difficult. To identify the best places to look for these phages against P. aeruginosa we screened hospital sewages, soils, and rivers in two cities.
Results
We isolated eighteen different phages, determined their host range, infection property, and plaque morphology. We found that the sewage and sewage-contaminated environments are the most reliable sources for the isolation of Pseudomonas phages. In addition, phages isolated from hospital sewage showed the highest efficiency in lysing the bacteria used for host range determination. In contrast, phages from the river had larger plaque size and lysed bacteria with higher levels of antibiotic resistance.
Conclusions
Our findings provided additional support for the importance of sewage as the source of phage isolation.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference61 articles.
1. Aghaee BL, Khan Mirzaei M, Alikhani MY, Mojtahedi A, Maurice CF. Improving the inhibitory effect of phages against Pseudomonas aeruginosa isolated from a burn patient using a combination of phages and antibiotics. Viruses. 2021;13:334.
2. WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 23 Feb 2020.
3. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol. 2012;10:841–51.
4. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19:403–34.
5. Tümmler B. Emerging therapies against infections with Pseudomonas aeruginosa. F1000Res. 2019;8:1. https://doi.org/10.12688/f1000research.19509.1.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献