Author:
Abo-Neima Sahar E.,El-Sheekh Mostafa M.,Al-Zaban Mayasar I.,EL-Sayed Abeer I. M.
Abstract
AbstractMicrobial skin infections, antibiotic resistance, and poor wound healing are major problems, and new treatments are needed. Our study targeted solving this problem with Nigella sativa (NS) oil and photodynamic therapy based on methylene blue (MB-PDT). Antibacterial activity and minimum inhibitory concentration (MIC) were determined via agar well diffusion assay and broth microdilution, respectively. Transmission electron microscopy (TEM) proved deformations in Staphylococcus aureus ATCC 6538. Gas chromatography–mass spectrometry identified useful compounds that were suggested to be responsible for the potency of the oil. NS oil was tested as an antivirus against low pathogenic coronavirus (229E). Therapies examined, MB-PDT, NS, and MB-PDT + NS oil, to accelerate wound healing. The antibacterial efficacy against S. aureus was promising, with a MIC of 12.5% and TEM showing injured cells treated with NS oil. This oil inhibited 229E virus up to 42.85% and 32.14%. All tested therapies were successful in accelerating wound healing. The most successful was combined therapy (MB-PDT + NS oil), with a faster healing time. The combined therapy (MB-PDT + NS oil) reduced bacterial counts, which may be a key factor in accelerating wound healing. Skin wound histology was investigated; blood hematology and biochemical analysis did not change significantly after the safe combination treatment. A combination treatment could facilitate healing in a simple and inexpensive way in the future. Based on the results of the in vitro and in vivo studies, it was determined that NS oil had antibacterial and anti-corona virus activity when used in conjunction with photodynamic treatment based on methylene blue to treat wound infections.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献