Understanding the groups of care transition strategies used by U.S. hospitals: an application of factor analytic and latent class methods

Author:

Mays Glen,Li Jing,Clouser Jessica Miller,Du Gaixin,Stromberg Arnold,Jack Brian,Nguyen Huong Q.,Williams Mark V.

Abstract

Abstract Background After activation of the Hospital Readmission Reduction Program (HRRP) in 2012, hospitals nationwide experimented broadly with the implementation of Transitional Care (TC) strategies to reduce hospital readmissions. Although numerous evidence-based TC models exist, they are often adapted to local contexts, rendering large-scale evaluation difficult. Little systematic evidence exists about prevailing implementation patterns of TC strategies among hospitals, nor which strategies in which combinations are most effective at improving patient outcomes. We aimed to identify and define combinations of TC strategies, or groups of transitional care activities, implemented among a large and diverse cohort of U.S. hospitals, with the ultimate goal of evaluating their comparative effectiveness. Methods We collected implementation data for 13 TC strategies through a nationwide, web-based survey of representatives from short-term acute-care and critical access hospitals (N = 370) and obtained Medicare claims data for patients discharged from participating hospitals. TC strategies were grouped separately through factor analysis and latent class analysis. Results We observed 348 variations in how hospitals implemented 13 TC strategies, highlighting the diversity of hospitals’ TC strategy implementation. Factor analysis resulted in five overlapping groups of TC strategies, including those characterized by 1) medication reconciliation, 2) shared decision making, 3) identifying high risk patients, 4) care plan, and 5) cross-setting information exchange. We determined that the groups suggested by factor analysis results provided a more logical grouping. Further, groups of TC strategies based on factor analysis performed better than the ones based on latent class analysis in detecting differences in 30-day readmission trends. Conclusions U.S. hospitals uniquely combine TC strategies in ways that require further evaluation. Factor analysis provides a logical method for grouping such strategies for comparative effectiveness analysis when the groups are dependent. Our findings provide hospitals and health systems 1) information about what groups of TC strategies are commonly being implemented by hospitals, 2) strengths associated with the factor analysis approach for classifying these groups, and ultimately, 3) information upon which comparative effectiveness trials can be designed. Our results further reveal promising targets for comparative effectiveness analyses, including groups incorporating cross-setting information exchange.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3