Comparison of analysis methods and design choices for treatment-by-period interaction in unidirectional switch designs: a simulation study

Author:

Zhan Zhuozhao,de Bock Geertruida H.,van den Heuvel Edwin R.

Abstract

Abstract Background Due to identifiability problems, statistical inference about treatment-by-period interactions has not been discussed for stepped wedge designs in the literature thus far. Unidirectional switch designs (USDs) generalize the stepped wedge designs and allow for estimation and testing of treatment-by-period interaction in its many flexible design forms. Methods Under different forms of the USDs, we simulated binary data at both aggregated and individual levels and studied the performances of the generalized linear mixed model (GLMM) and the marginal model with generalized estimation equations (GEE) for estimating and testing treatment-by-period interactions. Results The parallel group design had the highest power for detecting the treatment-by-period interactions. While there was no substantial difference between aggregated-level and individual-level analysis, the GLMM had better point estimates than the marginal model with GEE. Furthermore, the optimal USD for estimating the average treatment effect was not efficient for treatment-by-period interaction and the marginal model with GEE required a substantial number of clusters to yield unbiased estimates of the interaction parameters when the correlation structure is autoregressive of order 1 (AR1). On the other hand, marginal model with GEE had better coverages than GLMM under the AR1 correlation structure. Conclusion From the designs and methods evaluated, in general, parallel group design with a GLMM is, preferred for estimation and testing of treatment-by-period interaction in a clustered randomized controlled trial for a binary outcome.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3