Abstract
Abstract
Background
The population attributable fraction (PAF) is the fraction of disease cases in a sample that can be attributed to an exposure. Estimating the PAF often involves the estimation of the probability of having the disease given the exposure while adjusting for confounders. In many settings, the exposure can interact with confounders. Additionally, the exposure may have a monotone effect on the probability of having the disease, and this effect is not necessarily linear.
Methods
We develop a semiparametric approach for estimating the probability of having the disease and, consequently, for estimating the PAF, controlling for the interaction between the exposure and a confounder. We use a tensor product of univariate B-splines to model the interaction under the monotonicity constraint. The model fitting procedure is formulated as a quadratic programming problem, and, thus, can be easily solved using standard optimization packages. We conduct simulations to compare the performance of the developed approach with the conventional B-splines approach without the monotonicity constraint, and with the logistic regression approach. To illustrate our method, we estimate the PAF of hopelessness and depression for suicidal ideation among elderly depressed patients.
Results
The proposed estimator exhibited better performance than the other two approaches in the simulation settings we tried. The estimated PAF attributable to hopelessness is 67.99% with 95% confidence interval: 42.10% to 97.42%, and is 22.36% with 95% confidence interval: 12.77% to 56.49% due to depression.
Conclusions
The developed approach is easy to implement and supports flexible modeling of possible non-linear relationships between a disease and an exposure of interest.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Reference39 articles.
1. Deubner DC, Wilkinson WE, Helms MJ, Tyroler HA, Hames CG. Logistic model estimation of death attributable to risk factors for cardiovascular disease in Evans County, Georgia. Am J Epidemiol. 1980; 112(1):135–43.
2. Rothman KJ, Greenland S. Causation and causal inference In: Rothman KJ, Greenland S, editors. Modern Epidemiology. Philadelphia, Pennsylvania: Lippincott, Williams & Wilkins: 1998.
3. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983; 70(1):41–55.
4. Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C. Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol. 1985; 122(5):904–14.
5. Greenland S, Drescher K. Maximum likelihood estimation of the attributable fraction from logistic models. Biometrics. 1993; 49(3):865–72.