A multi-country comparison of stochastic models of breast cancer mortality with P-splines smoothing approach

Author:

Mubarik Sumaira,Hu Ying,Yu ChuanhuaORCID

Abstract

Abstract Background Precise predictions of incidence and mortality rates due to breast cancer (BC) are required for planning of public health programs as well as for clinical services. A number of approaches has been established for prediction of mortality using stochastic models. The performance of these models intensely depends on different patterns shown by mortality data in different countries. Methods The BC mortality data is retrieved from the Global burden of disease (GBD) study 2017 database. This study include BC mortality rates from 1990 to 2017, with ages 20 to 80+ years old women, for different Asian countries. Our study extend the current literature on Asian BC mortality data, on both the number of considered stochastic mortality models and their rigorous evaluation using multivariate Diebold-Marino test and by range of graphical analysis for multiple countries. Results Study findings reveal that stochastic smoothed mortality models based on functional data analysis generally outperform on quadratic structure of BC mortality rates than the other lee-carter models, both in term of goodness of fit and on forecast accuracy. Besides, smoothed lee carter (SLC) model outperform the functional demographic model (FDM) in case of symmetric structure of BC mortality rates, and provides almost comparable results to FDM in within and outside data forecast accuracy for heterogeneous set of BC mortality rates. Conclusion Considering the SLC model in comparison to the other can be obliging to forecast BC mortality and life expectancy at birth, since it provides even better results in some cases. In the current situation, we can assume that there is no single model, which can truly outperform all the others on every population. Therefore, we also suggest generating BC mortality forecasts using multiple models rather than relying upon any single model.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perspective Chapter: Enhancing Regression Analysis with Splines and Machine Learning – Evaluation of How to Capture Complex Non-Linear Multidimensional Variables;Nonlinear Systems and Matrix Analysis - Recent Advances in theory and Applications [Working Title];2024-09-11

2. Handling Overlapping Asymmetric Data Sets—A Twice Penalized P-Spline Approach;Mathematics;2024-03-05

3. Individualized Discrimination Model for Breast Cancer;Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science;2023-10-20

4. Inorganic imaging nanoprobes for breast cancer diagnosis;Radiation Medicine and Protection;2023-06

5. Global trends and forecasts of breast cancer incidence and deaths;Scientific Data;2023-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3