Evaluating the performance of propensity score matching based approaches in individual patient data meta-analysis

Author:

Johara Fatema TujORCID,Benedetti Andrea,Platt Robert,Menzies Dick,Viiklepp Piret,Schaaf Simon,Chan Edward

Abstract

Abstract Background Individual-patient data meta-analysis (IPD-MA) is an increasingly popular approach because of its analytical benefits. IPD-MA of observational studies must overcome the problem of confounding, otherwise biased estimates of treatment effect may be obtained. One approach to reducing confounding bias could be the use of propensity score matching (PSM). IPD-MA can be considered as two-stage clustered data (patients within studies) and propensity score matching can be implemented within studies, across studies, and combining both. Methods This article focuses on implementation of four PSM-based approaches for the analysis of data structure that exploit IPD-MA in two ways: (i) estimation of propensity score model using single-level or random-effects logistic regression; and (ii) matching of propensity scores (PS) across studies, within studies or preferential-within studies. We investigated the performance of these approaches through a simulation study, which considers an IPD-MA that examined the success of different treatments for multidrug-resistant tuberculosis (MDR-TB). The simulation parameters were varied according to three treatment prevalences (according to studies, 50% and 30%), three levels of heterogeneity between studies (low, moderate and high) and three levels of pooled odds ratio (1, 1.5, 3). Results All approaches showed greater biases at the higher levels of heterogeneity regardless of the choices of treatment prevalences. However, matching of propensity scores using within-study and preferential-within study reported better performance compared to matching across studies when treatment prevalence varied across-studies. For fixed prevalences, a random-effect propensity score model to estimate propensity scores followed by matching of propensity scores across-studies achieved lower biases compared to other PSM-based approaches. Conclusions Propensity score matching has wide application in health research while only limited literature is available on the implementation of PSM methods in IPD-MA, and until now methodological performance of PSM methods have not been examined. We believe, this work offers an intuition to the applied researcher for the choice of the PSM-based approaches.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3