Common sampling and modeling approaches to analyzing readmission risk that ignore clustering produce misleading results

Author:

Zhao Huaqing,Tanner Samuel,Golden Sherita H.,Fisher Susan G.,Rubin Daniel J.ORCID

Abstract

Abstract Background There is little consensus on how to sample hospitalizations and analyze multiple variables to model readmission risk. The purpose of this study was to compare readmission rates and the accuracy of predictive models based on different sampling and multivariable modeling approaches. Methods We conducted a retrospective cohort study of 17,284 adult diabetes patients with 44,203 discharges from an urban academic medical center between 1/1/2004 and 12/31/2012. Models for all-cause 30-day readmission were developed by four strategies: logistic regression using the first discharge per patient (LR-first), logistic regression using all discharges (LR-all), generalized estimating equations (GEE) using all discharges, and cluster-weighted (CWGEE) using all discharges. Multiple sets of models were developed and internally validated across a range of sample sizes. Results The readmission rate was 10.2% among first discharges and 20.3% among all discharges, revealing that sampling only first discharges underestimates a population’s readmission rate. Number of discharges was highly correlated with number of readmissions (r = 0.87, P < 0.001). Accounting for clustering with GEE and CWGEE yielded more conservative estimates of model performance than LR-all. LR-first produced falsely optimistic Brier scores. Model performance was unstable below samples of 6000–8000 discharges and stable in larger samples. GEE and CWGEE performed better in larger samples than in smaller samples. Conclusions Hospital readmission risk models should be based on all discharges as opposed to just the first discharge per patient and utilize methods that account for clustered data.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3