A Bayesian latent class mixture model with censoring for correlation analysis in antimicrobial resistance across populations

Author:

Zhang Min,Wang ChongORCID,O’Connor Annette M.

Abstract

Abstract Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different populations are many, including interest in similar changes in resistance which might provide insight into emergence and control options. Methods In this research, we developed a method to quantify the correlation in antimicrobial resistance across populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges associated with analyzing the minimum inhibitory concentration data. Results Application of this approach to the surveillance data from National Antimicrobial Resistance Monitoring System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible populations from Salmonella serotype Typhimurium across food animal and human populations. Conclusions Our proposed approach has been shown to be accurate and superior to the commonly used naïve estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Reference40 articles.

1. World Health Organization. Antimicrobial Resistance Global Report on Surveillance: 2014 Summary.2014. https://apps.who.int/iris/handle/10665/112642. Accessed 01 Feb 2020.

2. Public Health Agency of Canada. Surveillance bulletin: Reductions in antimicrobial use and resistance: preliminary evidence of the effect of the Canadian chicken industry’s elimination of use of antimicrobials of very high importance to human medicine. 2016. https://www.canada.ca/en/public-health/services/publications/drugs-health-products/canadian-integrated-program-antimicrobial-resistances-surveillance-bulletin.html. Accessed 10 Mar 2020.

3. Karp B, Tate H, Plumblee J, Dessai U, Whichard J, Thacker E, Hale K, Wilson W, Friedman C, Griffin P, et al. National Antimicrobial Resistance Monitoring System: two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog Dis. 2017; 14(10):545–57.

4. Nguyen M, Long S, McDermott P, Olsen R, Olson R, Stevens R, Tyson G, Zhao S, Davis J. Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol. 2019; 57(2):01260–18.

5. National Antimicrobial Resistance Monitoring System. National Antimicrobial Resistance Monitoring System (NARMS) methodology. 2018. https://www.fda.gov/media/101741/download. Accessed 01 Feb 2020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3