Abstract
Abstract
Background
Novel precision medicine therapeutics target increasingly granular, genomically-defined populations. Rare sub-groups make it challenging to study within a clinical trial or single real-world data (RWD) source; therefore, pooling from disparate sources of RWD may be required for feasibility. Heterogeneity assessment for pooled data is particularly complex when contrasting a pooled real-world comparator cohort (rwCC) with a single-arm clinical trial (SAT), because the individual comparisons are not independent as all compare a rwCC to the same SAT. Our objective was to develop a methodological framework for pooling RWD focused on the rwCC use case, and simulate novel approaches of heterogeneity assessment, especially for small datasets.
Methods
We present a framework with the following steps: pre-specification, assessment of dataset eligibility, and outcome analyses (including assessment of outcome heterogeneity). We then simulated heterogeneity assessments for a binary response outcome in a SAT compared to two rwCCs, using standard methods for meta-analysis, and an Adjusted Cochran’s Q test, and directly comparing the individual participant data (IPD) from the rwCCs.
Results
We found identical power to detect a true difference for the adjusted Cochran’s Q test and the IPD method, with both approaches superior to a standard Cochran’s Q test. When assessing the impact of heterogeneity in the null scenario of no difference between the SAT and rwCCs, a lack of statistical power led to Type 1 error inflation. Similarly, in the alternative scenario of a true difference between SAT and rwCCs, we found substantial Type 2 error, with underpowered heterogeneity testing leading to underestimation of the treatment effect.
Conclusions
We developed a methodological framework for pooling RWD sources in the context of designing a rwCC for a SAT. When testing for heterogeneity during this process, the adjusted Cochran’s Q test matches the statistical power of IPD heterogeneity testing. Limitations of quantitative heterogeneity testing in protecting against Type 1 or Type 2 error indicate these tests are best used descriptively, and after careful selection of datasets based on clinical/data considerations. We hope these findings will facilitate the rigorous pooling of RWD to unlock insights to benefit oncology patients.
Funder
Flatiron Health
Janssen Research and Development
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献