Comparisons of statistical distributions for cluster sizes in a developing pandemic

Author:

Faddy M. J.,Pettitt A. N.

Abstract

Abstract Background We consider cluster size data of SARS-CoV-2 transmissions for a number of different settings from recently published data. The statistical characteristics of superspreading events are commonly described by fitting a negative binomial distribution to secondary infection and cluster size data as an alternative to the Poisson distribution as it is a longer tailed distribution, with emphasis given to the value of the extra parameter which allows the variance to be greater than the mean. Here we investigate whether other long tailed distributions from more general extended Poisson process modelling can better describe the distribution of cluster sizes for SARS-CoV-2 transmissions. Methods We use the extended Poisson process modelling (EPPM) approach with nested sets of models that include the Poisson and negative binomial distributions to assess the adequacy of models based on these standard distributions for the data considered. Results We confirm the inadequacy of the Poisson distribution in most cases, and demonstrate the inadequacy of the negative binomial distribution in some cases. Conclusions The probability of a superspreading event may be underestimated by use of the negative binomial distribution as much larger tail probabilities are indicated by EPPM distributions than negative binomial alternatives. We show that the large shared accommodation, meal and work settings, of the settings considered, have the potential for more severe superspreading events than would be predicted by a negative binomial distribution. Therefore public health efforts to prevent transmission in such settings should be prioritised.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3