Text analysis framework for identifying mutations among non-small cell lung cancer patients from laboratory data

Author:

Yusuf Amman,Boyne Devon J.,O’Sullivan Dylan E.,Brenner Darren R.,Cheung Winson Y.,Mirza Imran,Jarada Tamer N.

Abstract

Abstract Background Laboratory data can provide great value to support research aimed at reducing the incidence, prolonging survival and enhancing outcomes of cancer. Data is characterized by the information it carries and the format it holds. Data captured in Alberta’s biomarker laboratory repository is free text, cluttered and rouge. Such data format limits its utility and prohibits broader adoption and research development. Text analysis for information extraction of unstructured data can change this and lead to more complete analyses. Previous work on extracting relevant information from free text, unstructured data employed Natural Language Processing (NLP), Machine Learning (ML), rule-based Information Extraction (IE) methods, or a hybrid combination between them. Methods In our study, text analysis was performed on Alberta Precision Laboratories data which consisted of 95,854 entries from the Southern Alberta Dataset (SAD) and 6944 entries from the Northern Alberta Dataset (NAD). The data covers all of Alberta and is completely population-based. Our proposed framework is built around rule-based IE methods. It incorporates topics such as Syntax and Lexical analyses to achieve deterministic extraction of data from biomarker laboratory data (i.e., Epidermal Growth Factor Receptor (EGFR) test results). Lexical analysis compromises of data cleaning and pre-processing, Rich Text Format text conversion into readable plain text format, and normalization and tokenization of text. The framework then passes the text into the Syntax analysis stage which includes the rule-based method of extracting relevant data. Rule-based patterns of the test result are identified, and a Context Free Grammar then generates the rules of information extraction. Finally, the results are linked with the Alberta Cancer Registry to support real-world cancer research studies. Results Of the original 5512 entries in the SAD dataset and 5017 entries in the NAD dataset which were filtered for EGFR, the framework yielded 5129 and 3388 extracted EGFR test results from the SAD and NAD datasets, respectively. An accuracy of 97.5% was achieved on a random sample of 362 tests. Conclusions We presented a text analysis framework to extract specific information from unstructured clinical data. Our proposed framework has shown that it can successfully extract relevant information from EGFR test results.

Funder

Canadian Institutes of Health Research (CIHR) Post-Doctoral Fellowship

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. Bassel N, Yang JC, Owonikoko TK. Benefits and limitations of real-world evidence: lessons from EGFR mutation-positive non-small-cell lung cancer. Future Oncol. 2021;17(8):965–77.

2. U.S. Food & Drug. Real-World Evidence. 2022. Retrieved on May 3, 2022, from https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence.

3. Spyns P. Natural language processing in medicine: an overview. Methods Inf Med. 1996;35(4–5):285–301.

4. Mykowiecka A, Marciniak M, Kupść A. Rule-based information extraction from patients’ clinical data. J Biomed Inform. 2009;42(5):923–36.

5. Aho AV, Lam MS, Sethi R, Ullman JD. Lexical Analysis. In: Aho AV, Lam MS, Sethi R, Ullman JD, editors. Compilers: Principles, Techniques, and Tools. 2nd ed. Pearson Education: Inc; 2006. p. 109–90.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3