Simulating complex patient populations with hierarchical learning effects to support methods development for post-market surveillance

Author:

Davis Sharon E.,Ssemaganda Henry,Koola Jejo D.,Mao Jialin,Westerman Dax,Speroff Theodore,Govindarajulu Usha S.,Ramsay Craig R.,Sedrakyan Art,Ohno-Machado Lucila,Resnic Frederic S.,Matheny Michael E.

Abstract

Abstract Background Validating new algorithms, such as methods to disentangle intrinsic treatment risk from risk associated with experiential learning of novel treatments, often requires knowing the ground truth for data characteristics under investigation. Since the ground truth is inaccessible in real world data, simulation studies using synthetic datasets that mimic complex clinical environments are essential. We describe and evaluate a generalizable framework for injecting hierarchical learning effects within a robust data generation process that incorporates the magnitude of intrinsic risk and accounts for known critical elements in clinical data relationships. Methods We present a multi-step data generating process with customizable options and flexible modules to support a variety of simulation requirements. Synthetic patients with nonlinear and correlated features are assigned to provider and institution case series. The probability of treatment and outcome assignment are associated with patient features based on user definitions. Risk due to experiential learning by providers and/or institutions when novel treatments are introduced is injected at various speeds and magnitudes. To further reflect real-world complexity, users can request missing values and omitted variables. We illustrate an implementation of our method in a case study using MIMIC-III data for reference patient feature distributions. Results Realized data characteristics in the simulated data reflected specified values. Apparent deviations in treatment effects and feature distributions, though not statistically significant, were most common in small datasets (n < 3000) and attributable to random noise and variability in estimating realized values in small samples. When learning effects were specified, synthetic datasets exhibited changes in the probability of an adverse outcomes as cases accrued for the treatment group impacted by learning and stable probabilities as cases accrued for the treatment group not affected by learning. Conclusions Our framework extends clinical data simulation techniques beyond generation of patient features to incorporate hierarchical learning effects. This enables the complex simulation studies required to develop and rigorously test algorithms developed to disentangle treatment safety signals from the effects of experiential learning. By supporting such efforts, this work can help identify training opportunities, avoid unwarranted restriction of access to medical advances, and hasten treatment improvements.

Funder

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3