Impaired SorLA maturation and trafficking as a new mechanism for SORL1 missense variants in Alzheimer disease

Author:

Rovelet-Lecrux AnneORCID,Feuillette SebastienORCID,Miguel LaetitiaORCID,Schramm CatherineORCID,Pernet Ségolène,Quenez Olivier,Ségalas-Milazzo IsabelleORCID,Guilhaudis LaureORCID,Rousseau Stéphane,Riou GaëtanORCID,Frébourg Thierry,Campion Dominique,Nicolas GaëlORCID,Lecourtois MagalieORCID

Abstract

AbstractThe SorLA protein, encoded by the SORL1 gene, is a major player in Alzheimer’s disease (AD) pathophysiology. Functional and genetic studies demonstrated that SorLA deficiency results in increased production of Aβ peptides, and thus a higher risk of AD. A large number of SORL1 missense variants have been identified in AD patients, but their functional consequences remain largely undefined. Here, we identified a new pathophysiological mechanism, by which rare SORL1 missense variants identified in AD patients result in altered maturation and trafficking of the SorLA protein. An initial screening, based on the overexpression of 70 SorLA variants in HEK293 cells, revealed that 15 of them (S114R, R332W, G543E, S564G, S577P, R654W, R729W, D806N, Y934C, D1535N, D1545E, P1654L, Y1816C, W1862C, P1914S) induced a maturation and trafficking-deficient phenotype. Three of these variants (R332W, S577P, and R654W) and two maturation-competent variants (S124R and N371T) were further studied in details in CRISPR/Cas9-modified hiPSCs. When expressed at endogenous levels, the R332W, S577P, and R654W SorLA variants also showed a maturation defective profile. We further demonstrated that these variants were largely retained in the endoplasmic reticulum, resulting in a reduction in the delivery of SorLA mature protein to the plasma membrane and to the endosomal system. Importantly, expression of the R332W and R654W variants in hiPSCs was associated with a clear increase of Aβ secretion, demonstrating a loss-of-function effect of these SorLA variants regarding this ultimate readout, and a direct link with AD pathophysiology. Furthermore, structural analysis of the impact of missense variants on SorLA protein suggested that impaired cellular trafficking of SorLA protein could be due to subtle variations of the protein 3D structure resulting from changes in the interatomic interactions.

Funder

Association France Alzheimer

Fondation pour la Recherche médicale

Fondation pour la recherche médicale

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3