Author:
Frackowiak Janusz,Mazur-Kolecka Bozena,Mehta Pankaj,Wegiel Jerzy
Abstract
AbstractAutism, the most frequent neurodevelopmental disorder of a very complex etiopathology, is associated with dysregulation of cellular homeostatic mechanisms, including processing of amyloid-β precursor protein (APP). Products of APP processing — N-terminally truncated amyloid-β peptide (N-tr-Aβ) species — are accumulated in autism in neurons and glia in the cortex, cerebellum, and subcortical structures of the brain. This process in neurons is correlated with increased oxidative stress. Because abnormally high levels of N-tr-Aβ are detected in only a fraction of neurons in the prefrontal cortex, we applied immunohistochemical staining and confocal microscopy in autopsy brain material from idiopathic and chromosome 15q11.2-q13 duplication (dup-15) autism to measure the load of N-tr-Aβ in the cells and synapses and to identify the subpopulation of neurons affected by these pathophysiological processes. The peptides accumulated in autism are N-terminally truncated; therefore, we produced a new antibody against Aβ truncated at N-terminal amino acid 11 modified to pyroglutamate to evaluate the presence and distribution of this peptide species in autism. We also quantified and characterized the oligomerization patterns of the Aβ-immunoreactive peptides in autism and control frozen brain samples. We provide morphological evidence, that in idiopathic and dup-15 autism, accumulation of N-tr-Aβ with and without pyroglutamate-11 modified N-terminus affects mainly the parvalbumin-expressing subpopulation of GABAergic neurons. N-tr-Aβ peptides are accumulated in neurons’ cytoplasm and nucleus as well as in GABAergic synapses. Aβ peptides with both C-terminus 40 and 42 were detected by immunoblotting in frozen cortex samples, in the form of dimers and complexes of the molecular sizes of 18–24kD and 32–34kD. We propose that deposition of N-tr-Aβ specifically affects the functions of the parvalbumin-expressing GABAergic neurons and results in a dysregulation of brain excitatory–inhibitory homeostasis in autism. This process may be the target of new therapies.
Funder
U.S. Department of Defense
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine
Reference51 articles.
1. Arqués O, Chicote I, Tenbaum S, Puig I, Palmer HG (2012) Standardized relative quantification of immunofluorescence tissue staining. Protocol Exchange. https://doi.org/10.1038/protex.2012.008
2. Bailey AR, Giunta BN, Obregon D, Nikolic WV, Tian J, Sanberg CD et al (2008) Peripheral biomarkers in autism: secreted amyloid precursor protein-α as a probable key player in early diagnosis. Int J Clin Exp Med 1:338–344
3. Banasr M, Lepack A, Fee C, Duric V, Maldonado-Aviles J, DiLeone R et al (2017) Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress (Thousand Oaks) 1. https://doi.org/10.1177/2470547017720459
4. Barucker C, Harmeier A, Weiske J, Fauler B, Albring KF, Prokop S et al (2014) Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription. J Biol Chem 289(29):20182–20191. https://doi.org/10.1074/jbc.M114.564690
5. Baskin DS, Widmayer MA, Sharpe MA (2010) Quantification and calibration of images in fluorescence microscopy. Anal Biochem 404:118–126. https://doi.org/10.1016/j.ab.2010.05.029
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献