The mixed model for repeated measures for cluster randomized trials: a simulation study investigating bias and type I error with missing continuous data

Author:

Bell Melanie L.ORCID,Rabe Brooke A.

Abstract

Abstract Background Cluster randomized trials (CRTs) are a design used to test interventions where individual randomization is not appropriate. The mixed model for repeated measures (MMRM) is a popular choice for individually randomized trials with longitudinal continuous outcomes. This model’s appeal is due to avoidance of model misspecification and its unbiasedness for data missing completely at random or at random. Methods We extended the MMRM to cluster randomized trials by adding a random intercept for the cluster and undertook a simulation experiment to investigate statistical properties when data are missing at random. We simulated cluster randomized trial data where the outcome was continuous and measured at baseline and three post-intervention time points. We varied the number of clusters, the cluster size, the intra-cluster correlation, missingness and the data-generation models. We demonstrate the MMRM-CRT with an example of a cluster randomized trial on cardiovascular disease prevention among diabetics. Results When simulating a treatment effect at the final time point we found that estimates were unbiased when data were complete and when data were missing at random. Variance components were also largely unbiased. When simulating under the null, we found that type I error was largely nominal, although for a few specific cases it was as high as 0.081. Conclusions Although there have been assertions that this model is inappropriate when there are more than two repeated measures on subjects, we found evidence to the contrary. We conclude that the MMRM for CRTs is a good analytic choice for cluster randomized trials with a continuous outcome measured longitudinally. Trial registration ClinicalTrials.gov, ID: NCT02804698.

Funder

National Cancer Institute

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3